The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024598 a(n) = s(1)s(n) + s(2)s(n-1) + ... + s(k)s(n+1-k), where k = floor((n+1)/2), s = (odd natural numbers). 2
 1, 3, 14, 22, 55, 73, 140, 172, 285, 335, 506, 578, 819, 917, 1240, 1368, 1785, 1947, 2470, 2670, 3311, 3553, 4324, 4612, 5525, 5863, 6930, 7322, 8555, 9005, 10416, 10928, 12529, 13107, 14910, 15558, 17575, 18297, 20540, 21340, 23821, 24703, 27434, 28402 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sum of the areas of all rectangles with odd side lengths r and s such that r + s = 2n. - Wesley Ivan Hurt, Apr 21 2020 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1). FORMULA a(n) = (4*n^3 + 3*n^2 + 2*n - 3*n^2*(-1)^n)/12. - Luce ETIENNE, Jan 17 2015 G.f.: x*(3*x^4 + 2*x^3 + 8*x^2 + 2*x + 1) / ((x-1)^4*(x+1)^3). - Colin Barker, Jan 17 2015 a(n) = Sum_{i=1..n} i * (2*n-i) * (i mod 2). - Wesley Ivan Hurt, Apr 21 2020 MATHEMATICA LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 3, 14, 22, 55, 73, 140}, 50] (* Harvey P. Dale, Aug 30 2021 *) PROG (PARI) Vec(x*(3*x^4+2*x^3+8*x^2+2*x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Jan 17 2015 (PARI) odd(n) = 2*n-1; a(n) = sum(j=1, (n+1)\2, odd(j)*odd(n+1-j)); \\ Michel Marcus, Jan 17 2015 CROSSREFS Sequence in context: A255219 A226341 A024473 * A019001 A034103 A034113 Adjacent sequences:  A024595 A024596 A024597 * A024599 A024600 A024601 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 15:57 EST 2021. Contains 349565 sequences. (Running on oeis4.)