login
Numbers with exactly 7 ones in binary expansion.
20

%I #26 Feb 14 2022 01:24:45

%S 127,191,223,239,247,251,253,254,319,351,367,375,379,381,382,415,431,

%T 439,443,445,446,463,471,475,477,478,487,491,493,494,499,501,502,505,

%U 506,508,575,607,623,631,635,637,638,671,687

%N Numbers with exactly 7 ones in binary expansion.

%H Ivan Neretin, <a href="/A023689/b023689.txt">Table of n, a(n) for n = 1..10000</a>

%H Robert Baillie, <a href="http://arxiv.org/abs/0806.4410">Summing the curious series of Kempner and Irwin</a>, arXiv:0806.4410 [math.CA], 2008-2015. See p. 18 for Mathematica code irwinSums.m.

%H M. I. Mazurkov and A. V. Sokolov, <a href="http://dx.doi.org/10.3103/S0735272713090045">Nonlinear substitution S-boxes based on composite power residue codes</a>, Radioelectronics and Communications Systems, Vol. 56, No. 9 (2013). DOI: 10.3103/S0735272713090045.

%F a(n+1) = A057168(a(n)). - _M. F. Hasler_, Aug 27 2014

%F Sum_{n>=1} 1/a(n) = 1.386779022721502147026318489565477811900220906277367947393004721391094590038... (calculated using Baillie's irwinSums.m, see Links). - _Amiram Eldar_, Feb 14 2022

%t Select[ Range[ 127, 704 ], (Count[ IntegerDigits[ #, 2 ], 1 ]==7)& ]

%o (PARI) is_A023689(n)=hammingweight(n)==7 \\ _M. F. Hasler_, Aug 27 2014

%o (PARI) print1(t=2^7-1); for(i=2, 50, print1(", "t=A057168(t))) \\ _M. F. Hasler_, Aug 27 2014

%Y Cf. A000079, A018900, A014311, A014312, A014313, A023688, A023690, A023691 (Hamming weight = 1, 2, ..., 9), A057168.

%K nonn,base,easy

%O 1,1

%A _Olivier GĂ©rard_