login
Denominator of n*(n-3)*(3*n^2 - 6*n + 2)/(3*(n-1)*(n-2)).
1

%I #11 Sep 08 2022 08:44:47

%S 1,9,18,5,45,63,28,54,135,55,198,117,91,315,360,68,459,513,190,315,

%T 693,253,828,450,325,1053,1134,203,1305,1395,496,792,1683,595,1890,

%U 999,703,2223,2340,410,2583,2709

%N Denominator of n*(n-3)*(3*n^2 - 6*n + 2)/(3*(n-1)*(n-2)).

%H G. C. Greubel, <a href="/A023418/b023418.txt">Table of n, a(n) for n = 3..1000</a>

%p A023418 := proc(n)

%p n*(n-3)*(3*n^2-6*n+2)/(3*(n-1)*(n-2)) ;

%p denom(%) ;

%p end proc: # _R. J. Mathar_, May 01 2015

%t Denominator[Table[n*(n - 3)*(3*n^2 - 6*n + 2)/(3*(n - 1)*(n - 2)), {n, 3, 50}]] (* _G. C. Greubel_, Jan 01 2018 *)

%o (PARI) for(n=3, 30, print1(denominator(n*(n - 3)*(3*n^2 - 6*n + 2)/(3*(n - 1)*(n - 2))), ", ")) \\ _G. C. Greubel_, Jan 01 2018

%o (Magma) [Denominator(n*(n - 3)*(3*n^2 - 6*n + 2)/(3*(n - 1)*(n - 2))): n in [3..30]]; // _G. C. Greubel_, Jan 01 2018

%K nonn

%O 3,2

%A _N. J. A. Sloane_