The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023358 Number of compositions into sums of cubes. 12

%I

%S 1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,11,14,18,23,29,36,44,53,64,78,96,120,

%T 150,187,232,286,351,430,527,649,802,993,1230,1522,1880,2318,2854,

%U 3514,4330,5341,6594,8145,10061,12423,15330,18908,23316,28753,35467,43762,54010,66665,82281,101540,125286,154566,190682

%N Number of compositions into sums of cubes.

%H T. D. Noe and Alois P. Heinz, <a href="/A023358/b023358.txt">Table of n, a(n) for n = 0..1000</a> (first 501 terms from T. D. Noe)

%F G.f.: 1 / (1 - Sum_{n>=1} x^(n^3) ). - _Joerg Arndt_, Mar 30 2014

%F a(n) ~ c * d^n, where d = 1.2338881403372741887535479..., c = 0.418031200641837887398653... - _Vaclav Kotesovec_, May 01 2014

%p a:= proc(n) option remember; `if`(n=0, 1,

%p `if`(n<0, 0, add(a(n-i^3), i=1..iroot(n, 3))))

%p end:

%p seq(a(n), n=0..80); # _Alois P. Heinz_, Sep 08 2014

%t a[n_] := a[n] = If[n==0, 1, If[n<0, 0, Sum[a[n-i^3], {i, 1, Floor[n^(1/3)]}]]]; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Apr 08 2015, after _Alois P. Heinz_ *)

%o (PARI) E=6; N=E^3-1; q='q+O('q^N);

%o gf=1/(1 - sum(n=1,E, q^(n^3) ) ); \\ test, several similar seqs.

%o v=Vec(gf) \\ _Joerg Arndt_, Mar 30 2014

%K nonn

%O 0,9

%A _David W. Wilson_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 13:21 EDT 2020. Contains 333089 sequences. (Running on oeis4.)