login
Expansion of 1/Product_{m>=1} (1 - m*q^m)^18.
2

%I #12 Aug 16 2023 08:12:22

%S 1,18,207,1842,13869,92250,557214,3111624,16272972,80461694,378917667,

%T 1709416008,7422200694,31136646366,126608628735,500368588830,

%U 1926482319873,7240422289338,26610335585263

%N Expansion of 1/Product_{m>=1} (1 - m*q^m)^18.

%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 18, g(n) = n. - _Seiichi Manyama_, Aug 16 2023

%H Seiichi Manyama, <a href="/A022742/b022742.txt">Table of n, a(n) for n = 0..5000</a>

%F a(0) = 1; a(n) = (18/n) * Sum_{k=1..n} A078308(k) * a(n-k). - _Seiichi Manyama_, Aug 16 2023

%Y Column k=18 of A297328.

%Y Cf. A078308.

%K nonn

%O 0,2

%A _N. J. A. Sloane_