login
Expansion of Product_{m>=1} (1-m*q^m)^29.
2

%I #10 Sep 08 2022 08:44:46

%S 1,-29,348,-2059,4234,19024,-133545,168954,832532,-2499510,-2308545,

%T 11279782,22571454,-55885088,-217574356,383141127,1062928416,

%U -961984578,-4860016156,-3840850828,23405599444

%N Expansion of Product_{m>=1} (1-m*q^m)^29.

%H G. C. Greubel, <a href="/A022689/b022689.txt">Table of n, a(n) for n = 0..1000</a>

%t With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^29, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 19 2018 *)

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^29)) \\ _G. C. Greubel_, Jul 19 2018

%o (Magma) Coefficients(&*[(1-m*x^m)^29:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Jul 19 2018

%K sign

%O 0,2

%A _N. J. A. Sloane_