login
Expansion of Product_{m>=1} (1-m*q^m)^23.
2

%I #10 Sep 08 2022 08:44:46

%S 1,-23,207,-782,-276,12259,-29578,-42711,229057,93863,-828023,

%T -2014110,4727719,15059963,-22586736,-58481962,-8654877,246061935,

%U 463250567,-671892192,-1993509889,-2171787581,5545061605,20642183588

%N Expansion of Product_{m>=1} (1-m*q^m)^23.

%H G. C. Greubel, <a href="/A022683/b022683.txt">Table of n, a(n) for n = 0..1000</a>

%t With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^23, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 19 2018 *)

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^23)) \\ _G. C. Greubel_, Jul 19 2018

%o (Magma) Coefficients(&*[(1-m*x^m)^23:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Jul 19 2018

%K sign

%O 0,2

%A _N. J. A. Sloane_