login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n avoiding the pattern 1342.
14

%I #95 May 31 2020 22:07:25

%S 1,1,2,6,23,103,512,2740,15485,91245,555662,3475090,22214707,

%T 144640291,956560748,6411521056,43478151737,297864793993,

%U 2059159989914,14350039389022,100726680316559,711630547589023,5057282786190872,36132861123763276,259423620328055093

%N Number of permutations of length n avoiding the pattern 1342.

%C Differs from A117156 which counts permutations avoiding the *consecutive* pattern 1342. - _Ray Chandler_, Dec 06 2011

%C Also, number of permutation of length n avoiding the pattern 3142 (see Stankova (1994) below). - _Alexander Burstein_, Aug 09 2013

%C Conjecture: a(n) is the number of permutations of length n simultaneously avoiding patterns 2143 and 415263. - _Alexander Burstein_, Mar 21 2019

%D Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 768, Th. 12.1.14.

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.48.

%H Vincenzo Librandi, <a href="/A022558/b022558.txt">Table of n, a(n) for n = 0..200</a>

%H Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, <a href="https://arxiv.org/abs/1803.07727">A family of Bell transformations</a>, arXiv:1803.07727 [math.CO], 2018.

%H Miklos Bona, <a href="https://arxiv.org/abs/math/9702223">Exact enumeration of 1342-avoiding permutations: A close link with labeled trees and planar maps</a>, arXiv:math/9702223 [math.CO], 1997.

%H Miklos Bona, <a href="http://dx.doi.org/10.1006/jcta.1997.2800">Exact enumeration of 1342-avoiding permutations; A close link with labeled trees and planar maps</a>, J. Combinatorial Theory, A80 (1997), 257-272.

%H Alexander Burstein and Jay Pantone, <a href="http://dx.doi.org/10.4310/JOC.2015.v6.n1.a4">Two examples of unbalanced Wilf-equivalence</a>, J. Combin. 6 (2015), no. 1-2, 55-67.

%H Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, <a href="https://arxiv.org/abs/2001.00393">Stieltjes moment sequences for pattern-avoiding permutations</a>, arXiv:2001.00393 [math.CO], 2020.

%H A. R. Conway and A. J. Guttmann, <a href="http://dx.doi.org/10.1016/j.aam.2014.12.004">On 1324-avoiding permutations</a>, Adv. Appl. Math. 64 (2015), 50-69.

%H A. L. L. Gao, S. Kitaev, and P. B. Zhang. <a href="https://arxiv.org/abs/1605.05490">On pattern avoiding indecomposable permutations</a>, arXiv:1605.05490 [math.CO], 2016.

%H Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, <a href="https://arxiv.org/abs/1906.06069">Combinatorial generation via permutation languages. I. Fundamentals</a>, arXiv:1906.06069 [cs.DM], 2019.

%H C. Homberger, <a href="http://arxiv.org/abs/1410.2657">Patterns in Permutations and Involutions: A Structural and Enumerative Approach</a>, arXiv preprint arXiv:1410.2657 [math.CO], 2014.

%H Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, <a href="https://doi.org/10.4230/LIPIcs.AofA.2018.29">Asymptotic Expansions for Sub-Critical Lagrangean Forms</a>, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.

%H W. Mlotkowski, K. A. Penson, <a href="http://arxiv.org/abs/1507.07312">A Fuss-type family of positive definite sequences</a>, arXiv:1507.07312 (2015), eq. (36).

%H Z. E. Stankova, <a href="http://dx.doi.org/10.1016/0012-365X(94)90242-9">Forbidden subsequences</a>, Discrete Math., 132 (1994), no. 1-3, 291-316.

%H Zvezdelina Stankova-Frenkel and Julian West, <a href="http://arxiv.org/abs/math/0103152">A new class of Wilf-equivalent permutations</a>, arXiv:math/0103152 [math.CO], 2001. See Fig. 11.

%F a(n) = (7*n^2-3*n-2)/2 * (-1)^(n-1) + 3*Sum_{i=2..n} 2^(i+1) * (2*i-4)!/(i!*(i-2)!) * binomial(n-i+2, 2) * (-1)^(n-i).

%F G.f.: 32*x/(1 + 20*x - 8*x^2 - (1 - 8*x)^(3/2)). - _Emeric Deutsch_, Mar 13 2004

%F Recurrence: n*a(n) = (7*n-22)*a(n-1) + 4*(2*n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 07 2012

%F a(n) ~ 2^(3*n+6)/(243*sqrt(Pi)*n^(5/2)). - _Vaclav Kotesovec_, Oct 07 2012

%e a(4) = 23 because obviously all permutations of length 4 with the exception of 1342 avoid 1342.

%p a := proc (n) options operator, arrow: (1/2)*(-1)^(n-1)*(7*n^2-3*n-2)+3*(sum((-1)^(n-i)*2^(i+1)*factorial(2*i-4)*binomial(n-i+2, 2)/(factorial(i)*factorial(i-2)), i = 2 .. n)) end proc: seq(a(n), n = 0 .. 30); # _Emeric Deutsch_, Oct 15 2014

%t Table[SeriesCoefficient[32*x/(1+20*x-8*x^2-(1-8*x)^(3/2)),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 07 2012 *)

%t Table[1/2*(-1)^(n-1) * (-2-3*n+7*n^2) + 1/4*(-1)^n * (1+n) * (-2-13*n+(n+2) * Hypergeometric2F1[-3/2,-n,-2-n,-8]),{n,0,20}] (* _Vaclav Kotesovec_, Aug 24 2014 *)

%o (PARI) x='x+O('x^66); Vec( 32*x/(1+20*x-8*x^2-(1-8*x)^(3/2)) ) \\ _Joerg Arndt_, May 04 2013

%Y Essentially the same as A004040.

%Y Cf. A117158.

%Y A005802, A022558, A061552 are representatives for the three Wilf classes for length-four avoiding permutations (cf. A099952).

%K nonn,easy

%O 0,3

%A _Miklos Bona_

%E Minor edits by _Vaclav Kotesovec_, Aug 24 2014