This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022349 Fibonacci sequence beginning 0, 15. 1
 0, 15, 15, 30, 45, 75, 120, 195, 315, 510, 825, 1335, 2160, 3495, 5655, 9150, 14805, 23955, 38760, 62715, 101475, 164190, 265665, 429855, 695520, 1125375, 1820895, 2946270, 4767165, 7713435, 12480600, 20194035, 32674635, 52868670, 85543305, 138411975, 223955280, 362367255, 586322535, 948689790, 1535012325 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (1, 1). FORMULA G.f.: 15*x/(1 - x - x^2). - Philippe Deléham, Nov 20 2008 From Bruno Berselli, Jul 27 2017: (Start) a(n) = 15*A000045(n). a(n) = Lucas(n+4) - Lucas(n-4), where Lucas(i) for i = 0..3 gives 7, -4, 3, -1. (End) MATHEMATICA Table[15 Fibonacci[n], {n, 0, 40}] (* or *) LinearRecurrence[{1, 1}, {0, 15}, 40] (* Bruno Berselli, Jul 27 2017 *) PROG (MAGMA) a0:=0; a1:=15; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Jul 27 2017 (PARI) for(n=0, 50, print1(15*fibonacci(n), ", ")) \\ G. C. Greubel, Aug 26 2017 CROSSREFS Cf. A000032, A000045. Sequence in context: A040211 A003891 A298044 * A036379 A070920 A056484 Adjacent sequences:  A022346 A022347 A022348 * A022350 A022351 A022352 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 19:01 EST 2018. Contains 318049 sequences. (Running on oeis4.)