Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 May 13 2019 18:06:41
%S 0,1,3,9,27,81,240,711,2094,6152,18012,52613,153297,445772,1293780,
%T 3748820,10845935,31336532,90426198,260644262,750502831,2158961013,
%U 6205225334,17820505454,51139664497,146654181925,420291420558
%N Tri-substituted alkanes of form C_n H_{2n-1} X_2 Y, or equivalently bi-substituted alkyls of form -C_n H_{2n-1} X_2 (n=1: CHXXY; n=2: CXXY-CHHH CXYH-CXHH CXXH-CYHH).
%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a022/A022014.java">Java program</a> (github)
%H G. Polya, <a href="http://dx.doi.org/10.1524/zkri.1936.93.1.415">Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen</a>, Zeit. f. Kristall., 93 (1936), 415-443; line 6 of Table I.
%H G. Polya, <a href="/A000598/a000598_3.pdf">Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen</a>, Zeit. f. Kristall., 93 (1936), 415-443; Table I, line 6. (Annotated scanned copy)
%F G.f.: (1/2) * (x*r(x)/(1-x*R(x)) * (1/(1-x*R(x))^2 + 1/(1-x^2*R(x^2))) where r(x) is the g.f. for A000598 and R(x) is the g.f. for A000642 [from Polya, p. 440]. - _Sean A. Irvine_, May 13 2019
%Y Cf. A000598, A000641, A000642.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, _Paul Zimmermann_