login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-8*x)*(1-10*x)*(1-11*x)).
1

%I #22 Sep 08 2022 08:44:45

%S 1,29,563,9145,134211,1845249,24249163,308352185,3824765171,

%T 46535545969,557596038363,6599196683625,77316285612931,

%U 898280118486689,10363489117309163,118857642802045465,1356308170915657491

%N Expansion of 1/((1-8*x)*(1-10*x)*(1-11*x)).

%H Vincenzo Librandi, <a href="/A020979/b020979.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (29,-278,880).

%F a(0)=1, a(1)=29, a(2)=563; for n>2, a(n) = 29*a(n-1)-278*a(n-2) + 880*a(n-3). - _Harvey P. Dale_, Dec 19 2012

%F a(n) = (2*11^(n+2) - 3*10^(n+2) + 8^(n+2))/6. - _Yahia Kahloune_, Jun 30 2013

%F a(0)=1, a(1)=29; for n>1, a(n) = 21*a(n-1) -110*a(n-2) +8^(n-1). - _Vincenzo Librandi_, Jul 08 2013

%t CoefficientList[Series[1 / ((1 - 8 x) (1 - 10 x) (1 - 11 x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{29, -278, 880}, {1, 29, 563},30] (* _Harvey P. Dale_, Dec 19 2012 *)

%o (Magma) I:=[1, 29, 563]; [n le 3 select I[n] else 29*Self(n-1)-278*Self(n-2)+880*Self(n-3): n in [1..20]]; /* or */ m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-8*x)*(1-10*x)*(1-11*x)))); // _Vincenzo Librandi_, Jul 08 2013

%o (PARI) x='x+O('x^30); Vec(1/((1-8*x)*(1-10*x)*(1-11*x))) \\ _G. C. Greubel_, Feb 09 2018

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_