login
Main diagonal of Wythoff array: w(n,n)=[ n*tau ]F(n+1)+(n-1)F(n), where tau=(1+sqrt(5))/2, F(n) = Fibonacci numbers.
2

%I #19 Nov 13 2023 07:29:09

%S 1,7,16,39,84,157,309,555,1042,1919,3338,6011,10713,18321,32228,54730,

%T 95320,165177,278208,478807,803383,1374926,2346070,3917414,6656320,

%U 11284381,18772741,31721202,52672252,88750072,149303520,247281057,415039507,695705846

%N Main diagonal of Wythoff array: w(n,n)=[ n*tau ]F(n+1)+(n-1)F(n), where tau=(1+sqrt(5))/2, F(n) = Fibonacci numbers.

%H Clark Kimberling, <a href="http://www.fq.math.ca/Scanned/32-4/kimberling.pdf">The first column of an interspersion</a>, Fibonacci Quarterly 32 (1994), pp. 301-314.

%H Clark Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/intersp.html">Interspersions</a>

%H N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a>

%t Table[Floor[n*GoldenRatio]Fibonacci[n+1]+(n-1)Fibonacci[n],{n,40}] (* _Harvey P. Dale_, Mar 09 2015 *)

%o (PARI) a(n) = floor(n*(1+sqrt(5))/2)*fibonacci(n+1) + (n-1)*fibonacci(n) \\ _Michel Marcus_, Mar 21 2013

%Y Cf. A000045, A001622, A035513.

%K nonn

%O 1,2

%A _Clark Kimberling_

%E More terms from _Harvey P. Dale_, Mar 09 2015