
Polynomial-Time Upper Bound to the Taxman

Score

Atli Fannar Frankĺın, University of Iceland
Robert K. Moniot, Fordham University

March 14, 2022

Abstract

We present a method of calculating an upper bound to the best possible
player score in the game of Taxman. This upper bound is equal or close to
the optimal score for all cases for which the optimal score is known. It can
be calculated in polynomial time, making it practical to be computed out
to large game sizes. We also discuss a bound that is apparently weaker
but more tractable to analyze.

1 Introduction

The Taxman game was invented by Diane Resek of San Francisco State
University, while she was working at the Lawrence Hall of Science in
Berkeley, California from about 1969 to 1972 [9]. The purpose of the game
was to give youngsters a fun way to practice their math skills. The game
soon became popular with teachers of computer science as a programming
exercise, since it is fairly easy but not trivial to implement, and provides
a gentle introduction to important algorithm design principles [1]. It is
also called “Number Shark.”

Taxman is a one-person game, usually played with the aid of a com-
puter. The game starts with a pot consisting of all of the positive numbers
up to some chosen N . The player chooses a number, which is removed
from the pot and added to the player’s score. The taxman then takes
as “tax” all of the numbers that divide that number, which are removed
from the pot and added to the taxman’s score. The player is not allowed
to take a number that does not give the taxman any tax. This process is
repeated until there are no numbers left in the pot that the player may
take. The remaining numbers are taken by the taxman, an estate tax as
it were.

The game has been studied to find optimal sequences of picks [2, 5].
The optimal scores as a function of pot size form a sequence that is listed
on the Online Encyclopedia of Integer Sequences (OEIS) [8], sequence
A019312. Since finding optimal play appears likely to be NP-hard, efforts
have been made to find heuristic strategies that can always win [4, 10].

1

http://oeis.org/A019312

In the following, we let s(N) denote the player’s score for a pot con-
taining N numbers.

2 Equivalence of Taxman game to a graph
matching problem.

We now show that playing the Taxman game is equivalent to solving a
graph matching problem. First some definitions.

We denote the initial pot of integers by P = {1, . . . , N}.
Definition 1. Suppose q and p are integers in P . We say that p covers
q, denoted q → p, if q is a proper divisor of p and there exists no x ∈ P
such that q is a proper divisor of x and x is a proper divisor of p.

With this definition, we note that:

• No x ∈ P satisfies x→ x.

• If x, y ∈ P , and x→ y, then y → x does not hold.

Definition 2. For any integer p ∈ P , define the rank ρ(p) as the number
of prime factors of p, counted with multiplicity.

By this definition ρ(1) = 0. Also, it follows that if q, p ∈ P satisfy
q → p, then ρ(p) = ρ(q) + 1.

Definition 3. Given a graph G, a matching M on G is a subset of the
set of edges of G such that all of the vertices connected to edges in M are
distinct. A matching is also called an independent edge set. If the edges
have weights, the weight of the matching is the sum of the weights of the
edges that are included in the matching.

Theorem 1. For a pot P of size N , construct a graph G in which the
vertices are the elements of P , and there is an edge between vertex q and
vertex p iff q → p or p→ q. Define the weight of an edge as the value of the
larger vertex connected to it. Then every valid taxman game corresponds
to a matching on G whose weight equals the player’s score for the game.

Proof. Construct the matching M as follows: if in round i of the game,
the player takes pi, let qi be the largest value taken by the taxman. By
the rules of the game, qi exists, since the taxman must take something on
every round, and qi divides pi. Now, suppose that qi → pi does not hold.
Then there must be some x ∈ P such that qi < x < pi with qi|x and x|pi.
In order for x not to have been taken on this round, it must have been
taken in some earlier round, by either the player or the taxman. But in
either case, qi would have been taken as well, so it would no longer be in
the pot on round i, contradicting the assumption that it is taken by the
taxman on that round. Therefore we have qi → pi, so (qi, pi) is an edge
of G. Place this edge in M .

For M to be a matching, it is necessary that all of the vertices con-
nected to edges of M be distinct. This is clearly the case. For if qi and
pi are taken by taxman and player respectively on round i, neither one
could have been taken in an earlier round, nor are they available to be
taken again in a later round. Hence neither qi nor pi can be equal to any

2

qj or pj for i 6= j. And qi 6= pi since qi is a proper divisor of pi. Therefore
M is a matching on G.

Since the weight of edge (qi, pi) is pi, the weight of the matching is

W (M) =
∑
i

pi. (1)

This is by definition the player’s score.

However, not every matching corresponds to a valid move sequence.
This is because the taxman may be able to take a number that is in the
matching via an edge that is not in the matching.

A few comments that are not directly relevant to this result, but worth
noting. First, G as constructed in Theorem 1 is an ordered (k+1)-partite
graph, where k = blog2Nc. Simply observe that since every edge connects
a pair of vertices whose ranks differ by 1, we can divide the vertices into
sets of vertices having the same rank. Then each edge connects a vertex
from a set of rank r to one from a set of rank r−1 or r+1. The minimum
rank is 0 and the maximum rank k is achieved by the largest value of
2k ≤ N . We also comment that for analysis of optimal play, the edges can
be taken as directed from q to p where q → p. Then G is a DAG. This
approach has been used by Brian Chess [2] and Dan Hoey [5] to develop
effective methods for finding optimal play sequences.

Corollary 1. Given a pot size N , the maximum weight of a matching M
on the corresponding graph G is an upper bound to the optimal player’s
score:

s(N) ≤ max
M onG

W (M) (2)

Proof. The player’s score for a game is equal to the weight of the matching
corresponding to the move sequence. Therefore it is not possible for a
move sequence to achieve a score that exceeds the maximum weight of a
matching.

3 A simpler upper bound

Moniot [7] observed that a simple upper bound to the player’s score can
be found by noting that the taxman must take at least one number from
the pot on every round, i.e., at least half of the numbers in the pot in
the course of the game. At best, the player can take the largest numbers
while giving the taxman the smallest numbers. For even N , a bound on
the player’s score is thus

s(N) ≤
N∑

i=N
2
+1

i =
1

8
N(3N + 2). (3)

As a fraction of the pot this bound is

1
8
N(3N + 2)
1
2
N(N + 1)

=
1

4

3N + 2

N + 1
, (4)

3

which asymptotically approaches 3/4 for large N .
This very simple calculation ignores the fact that the taxman must get

all but one of the primes greater than N/2 at the end of the game. The
player’s best first move is to take the largest prime in the pot, giving the
taxman 1 [1]. Thereafter, none of the remaining primes have any divisors
available for the taxman to take, and so are not eligible to be taken by
the player.

We can refine the analysis to take this fact into consideration. Denote
the number of primes less than or equal to x by π(x). The primes less than
or equal to N/2 can go to the taxman during play as divisors of numbers
the player takes. Then excluding all but one of the primes greater than
N/2, the number of numbers that can be taken during play, by player or
taxman, is

N ′ = N − (π(N)− π(N/2)) + 1, N > 1. (5)

(For N = 1 the equation is invalid since the assumption that there is at
least one prime greater than or equal to N/2 fails.) Now, since the player
can at best take all the numbers in the larger half of this set, the bound
on the score is

s(N) ≤
N∑

i=dN′/2e+1

i−
π(N)−1∑

i=π(N/2)+1

pi, (6)

where pi is the ith prime. Let

σ(x) =

π(x)∑
i=1

pi. (7)

Then (6) can be written

s(N) ≤ N(N + 1)

2
−

⌈
N′

2

⌉(⌈
N′

2

⌉
+ 1
)

2
− (σ(N)− σ(N/2)) + pπ(N). (8)

Clearly the player cannot do better than this (and for most N cannot
equal it), so this formula provides an upper bound on the score.

There are well-known approximations

px ∼ x log x, (9)

π(x) ≈ x

log x
, (10)

and

σ(x) ≈ x2

2 log x
. (11)

Using these,

N ′ ≈ N − N

logN
+

N/2

logN/2
+ 1 (12)

and (8) can be rewritten as follows. (For simplicity, we neglect pπ(N),
which is small and not worth including given the error in the approxima-

4

tions.)

s(N) .
N(N + 1)

2
−

⌈
N′

2

⌉(⌈
N′

2

⌉
+ 1
)

2

−N
2

2

(
1

logN
− 1

4 log N
2

)
. (13)

This shows that the sum of leftover primes the taxman takes at the end
of the game grows only slightly more slowly (by the factor 1/ logN) than
the player’s maximum take, and so remains significant out to quite large
N . Of course, by that time, the other numbers that become unpickable
during play will also be decreasing the true maximum player’s take, so
possibly the total “estate tax,” the numbers taken by the taxman at the
end of the game, always remains significant.

4 Discussion

We note that a maximum-weight matching can be computed in polyno-
mial time. For instance, using Edmond’s algorithm [3], the running time
is O(V 2E) where V is the number of vertices and E is the number of
edges in the graph. More efficient algorithms exist, such as Blossom V
by Kolmogorov [6]. Therefore the upper bound is practical to compute
for values of N that are significantly larger than the current largest N for
which the optimal score is known.

We compared the upper bounds given by (2) to the optimal scores
found by Brian Chess for N = 1 to N = 701. For some values of N ≤ 90
the optimal score is equal to this upper bound, but for 91 ≤ N ≤ 701 this
upper bound always exceeds the optimal score. The two largest fractional
differences we found are for N = 51 and N = 54, where the optimal score
is approximately 97.1% and 98.7%, respectively, of the upper bound. For
all other values of N up to 701, the optimal score is more than 99% of the
bound. We do not have a proof that the bound remains this tight for all
larger values of N . But in any case, this bound can serve as a benchmark
for testing proposed heuristic methods for winning at Taxman, for values
of N beyond those for which the optimal scores are known.

The simpler bound given by (8) is equal to this upper bound for 27
values of N , the largest being N = 36. For larger N , the bound (2) is
observed to be always tighter. For 37 ≤ N ≤ 1000, the bound (8) is about
5.8% higher than the bound (2) on average. Although we don’t have a
big-O growth rate for the bound in (2), the observed trend is that the
divergence between the two bounds increases as N increases.

References

[1] Carmony, Lowell A., and Holliday, Robert L. (1993). “An example
from Artificial Intelligence for CS1.” SIGCSE Bulletin 25:1, 1–5.

[2] Chess, Brian (2021). https://github.com/bvchess/taxman

5

https://github.com/bvchess/taxman

[3] Edmonds, Jack (1965). “Paths, trees, and flowers.” Canadian
Journal of Mathematics 17, 449–467. doi:10.4153/CJM-1965-045-4.

[4] Hensley, Douglas (1988). “A Winning Strategy at Taxman.”
Fibonacci Quarterly 26:3, 262.

[5] Hoey, Dan. Notes on A019312. Posted on OEIS at A019312.

[6] Kolmogorov, Vladimir (2009). “Blossom V: A new implementation of
a minimum cost perfect matching algorithm.” Mathematical
Programming Computation 1, 43–67. doi:10.1007/s12532-009-0002-8.

[7] Moniot, Robert K. (2007). “The Taxman Game.” Math Horizons 14,
February, 18-–20.

[8] On-Line Encyclopedia of Integer SequencesTM, published
electronically at http://oeis.org. Accessed December, 2021.

[9] Resek, Diane (2008), private communication to one of us (RKM).

[10] Trono, John A. (1994). “Taxman revisited.” SIGCSE Bulletin 26:4,
56–58.

6

https://doi.org/10.4153/CJM-1965-045-4
http://oeis.org/A019312
https://doi.org/10.1007/s12532-009-0002-8
http://oeis.org

