login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018886 Waring's problem: least positive integer requiring maximum number of terms when expressed as a sum of positive n-th powers. 1

%I

%S 1,7,23,79,223,703,2175,6399,19455,58367,176127,528383,1589247,

%T 4767743,14319615,42991615,129105919,387186687,1161822207,3486515199,

%U 10458497023,31377588223,94136958975,282427654143,847282962431,2541815332863

%N Waring's problem: least positive integer requiring maximum number of terms when expressed as a sum of positive n-th powers.

%C a(n) = (Q-1)*(2^n) +(2^n-1)*(1^n) is a sum of Q +2^n -2 terms, Q = trunc(3^n / 2^n).

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 393

%H T. D. Noe, <a href="/A018886/b018886.txt">Table of n, a(n) for n=1..200</a>

%H P. Pollack, <a href="http://www.math.dartmouth.edu/~ppollack/notes.pdf">Analytic and Combinatorial Number Theory</a> Course Notes, ex. 7.1.1. [?Broken link]

%H P. Pollack, <a href="http://alpha01.dm.unito.it/personalpages/cerruti/ac/notes.pdf">Analytic and Combinatorial Number Theory</a> Course Notes, ex. 7.1.1.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WaringsProblem.html">Waring's Problem.</a>

%F a(n) = 2^n*[(3/2)^n] - 1 = 2^n*A002379(n) -1.

%e a(3)= 23= 16+ 7= 2*(2^3) + 7*(1^3) is a sum of 9 cubes;

%e a(4)= 79= 64+15= 4*(2^4) +15*(1^4) is a sum of 19 biquadrates.

%p A018886 := proc(n)

%p 2^n*floor((3/2)^n)-1

%p end proc: # _R. J. Mathar_, May 07 2015

%t a[n_]:=-1+2^n*Floor[(3/2)^n]

%t a[Range[1,20]] (* _Julien Kluge_, Jul 21 2016 *)

%Y Cf. A079611.

%K nonn,easy,nice

%O 1,2

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 19:59 EDT 2021. Contains 342954 sequences. (Running on oeis4.)