login
a(n) = 12*n + 1.
40

%I #50 Sep 08 2022 08:44:43

%S 1,13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,193,205,217,

%T 229,241,253,265,277,289,301,313,325,337,349,361,373,385,397,409,421,

%U 433,445,457,469,481,493,505,517,529,541,553,565,577,589,601,613,625,637

%N a(n) = 12*n + 1.

%H G. C. Greubel, <a href="/A017533/b017533.txt">Table of n, a(n) for n = 0..1000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F a(n) = 12*n + 1, n >= 0.

%F a(n) = 24*n - 10 - a(n-1), (with a(0)=1). - _Vincenzo Librandi_, Dec 24 2010

%F G.f.: (1 + 11*x)/(1-x)^2. - _Indranil Ghosh_, Apr 05 2017

%F E.g.f.: (1 + 12*x)*exp(x). - _G. C. Greubel_, Sep 18 2019

%p seq(12*n+1, n=0..60); # _G. C. Greubel_, Sep 18 2019

%t Array[12*#+1&,60,0] (* _Vladimir Joseph Stephan Orlovsky_, Dec 14 2009 *)

%t CoefficientList[Series[(1+11x)/(1-x)^2, {x, 0,60}], x] (* _Michael De Vlieger_, Apr 05 2017 *)

%o (PARI) a(n)=12*n+1 \\ _Charles R Greathouse IV_, Jul 10 2016

%o (Python) def a(n): return 12*n + 1 # _Indranil Ghosh_, Apr 05 2017

%o (C)

%o #include<stdio.h>

%o int main(){

%o int n;

%o for(n=0; n<=100; n++)

%o printf("%d, ", 12*n + 1);

%o return 0;

%o } /* _Indranil Ghosh_, Apr 05 2017 */

%o (Magma) [12*n+1: n in [0..60]]; // _G. C. Greubel_, Sep 18 2019

%o (Sage) [12*n + 1 for n in (0..60)] # _G. C. Greubel_, Sep 18 2019

%o (GAP) List([0..60], n-> 12*n + 1); # _G. C. Greubel_, Sep 18 2019

%Y Cf. A161700, A005408, A016813, A016921, A017281, A158057, A161705, A161709, A161714, A128470, A016945, A287326 (third column).

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_