%I #19 Sep 08 2022 08:44:42
%S 32768,2476099,24300000,115856201,380204032,992436543,2219006624,
%T 4437053125,8153726976,14025517307,22877577568,35723051649,
%U 53782400000,78502725751,111577100832,154963892093,210906087424,281950621875,370967703776,481170140857,616132666368
%N a(n) = (11*n + 8)^5.
%H Vincenzo Librandi, <a href="/A017489/b017489.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6, -15, 20, -15, 6, -1).
%F From _G. C. Greubel_, Sep 22 2019: (Start)
%F G.f.: (32768 +2279491*x +9934926*x^2 +6542326*x^3 +536366*x^4 +243*x^5 )/(1-x)^6.
%F E.g.f.: (32768 +2443331*x +9690285*x^2 +8391955*x^3 +2196150*x^4 +161051* x^5)*exp(x). (End)
%p seq((11*n+8)^5, n=0..30); # _G. C. Greubel_, Sep 22 2019
%t (11*Range[31] -3)^5 (* _G. C. Greubel_, Sep 22 2019 *)
%o (Magma) [(11*n+8)^5: n in [0..30]]; // _Vincenzo Librandi_, Sep 04 2011
%o (PARI) vector(30, n, (11*n-3)^5) \\ _G. C. Greubel_, Sep 22 2019
%o (Sage) [(11*n+8)^5 for n in (0..30)] # _G. C. Greubel_, Sep 22 2019
%o (GAP) List([0..30], n-> (11*n+8)^5); # _G. C. Greubel_, Sep 22 2019
%Y Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), this sequence (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_