login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = (11*n + 8)^3.
12

%I #22 Sep 08 2022 08:44:42

%S 512,6859,27000,68921,140608,250047,405224,614125,884736,1225043,

%T 1643032,2146689,2744000,3442951,4251528,5177717,6229504,7414875,

%U 8741816,10218313,11852352,13651919,15625000,17779581,20123648,22665187,25412184,28372625,31554496,34965783,38614472,42508549

%N a(n) = (11*n + 8)^3.

%H Vincenzo Librandi, <a href="/A017487/b017487.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F From _G. C. Greubel_, Sep 21 2019: (Start)

%F G.f.: (512 + 4811*x + 2636*x^2 + 27*x^3)/(1-x)^4.

%F E.g.f.: (512 + 6347*x + 6897*x^2 + 1331*x^3)*exp(x). (End)

%p seq((11*n+8)^3, n=0..40); # _G. C. Greubel_, Sep 21 2019

%t (11*Range[50] - 3)^3 (* _G. C. Greubel_, Sep 21 2019 *)

%o (Magma) [(11*n+8)^3: n in [0..40]]; // _Vincenzo Librandi_, Sep 04 2011

%o (Maxima) makelist( (11*n+8)^3, n, 0, 30); /* _Martin Ettl_, Oct 21 2012 */

%o (PARI) a(n) = (11*n+8)^3; \\ _Altug Alkan_, Sep 08 2018

%o (Sage) [(11*n+8)^3 for n in (0..40)] # _G. C. Greubel_, Sep 21 2019

%o (GAP) List([0..40], n-> (11*n+8)^3); # _G. C. Greubel_, Sep 21 2019

%Y Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), this sequence (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_