%I #18 Sep 08 2022 08:44:42
%S 64,361,900,1681,2704,3969,5476,7225,9216,11449,13924,16641,19600,
%T 22801,26244,29929,33856,38025,42436,47089,51984,57121,62500,68121,
%U 73984,80089,86436,93025,99856,106929,114244,121801,129600,137641,145924,154449,163216,172225,181476,190969,200704
%N a(n) = (11*n + 8)^2.
%H Vincenzo Librandi, <a href="/A017486/b017486.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F From _G. C. Greubel_, Sep 21 2019: (Start)
%F G.f.: (64 + 169*x + 9*x^2)/(1-x)^3.
%F E.g.f.: (64 + 297*x + 121*x^2)*exp(x). (End)
%p seq((11*n+8)^2, n=0..45); # _G. C. Greubel_, Sep 21 2019
%t (11*Range[45]-3)^2 (* _G. C. Greubel_, Sep 21 2019 *)
%o (Magma) [(11*n+8)^2: n in [0..45]]; // _Vincenzo Librandi_, Sep 04 2011
%o (PARI) a(n)=(11*n+8)^2 \\ _Charles R Greathouse IV_, Jun 17 2017
%o (Sage) [(11*n+8)^2 for n in (0..45)] # _G. C. Greubel_, Sep 21 2019
%o (GAP) List([0..45], n-> (11*n+8)^2); # _G. C. Greubel_, Sep 21 2019
%Y Powers of the form (11*n+8)^m: A017485 (m=1), this sequence (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_