login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017313
a(n) = (10*n + 3)^9.
1
19683, 10604499373, 1801152661463, 46411484401953, 502592611936843, 3299763591802133, 15633814156853823, 58871586708267913, 186940255267540403, 520411082988487293, 1304773183829244583, 3004041937984268273
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
FORMULA
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10); a(0)=19683, a(1)=10604499373, a(2)=1801152661463, a(3)=46411484401953, a(4)=502592611936843, a(5)=3299763591802133, a(6)=15633814156853823, a(7)=58871586708267913, a(8)=186940255267540403, a(9)=520411082988487293. - Harvey P. Dale, Sep 14 2013
MATHEMATICA
(10*Range[0, 20]+3)^9 (* or *) LinearRecurrence[ {10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {19683, 10604499373, 1801152661463, 46411484401953, 502592611936843, 3299763591802133, 15633814156853823, 58871586708267913, 186940255267540403, 520411082988487293}, 30] (* Harvey P. Dale, Sep 14 2013 *)
PROG
(Magma) [(10*n+3)^9: n in [0..15]]; // Vincenzo Librandi, Jul 31 2011
(Python) for n in range(0, 15): print((10*n + 3)**9, end=", ") # Stefano Spezia, Oct 20 2018
CROSSREFS
Cf. A001017 (n^9), A017305 (10n+3).
Sequence in context: A017025 A017109 A017205 * A017433 A017565 A352037
KEYWORD
nonn,easy
STATUS
approved