login
a(n) = (6*n + 2)^12.
1

%I #19 Mar 30 2022 06:34:09

%S 4096,68719476736,56693912375296,4096000000000000,95428956661682176,

%T 1152921504606846976,9065737908494995456,52654090776777588736,

%U 244140625000000000000,951166013805414055936,3226266762397899821056,9774779120406941925376,26963771415920784510976

%N a(n) = (6*n + 2)^12.

%H Vincenzo Librandi, <a href="/A016944/b016944.txt">Table of n, a(n) for n = 0..2000</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).

%F From _Amiram Eldar_, Mar 30 2022: (Start)

%F a(n) = A016933(n)^12 = A016934(n)^6 = A016935(n)^4 = A016936(n)^3 = A016938(n)^2.

%F a(n) = 2^12*A016788(n).

%F Sum_{n>=0} 1/a(n) = PolyGamma(11, 1/3)/86890185149644800. (End)

%t (6*Range[0,20]+2)^12 (* or *) LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{4096,68719476736,56693912375296,4096000000000000,95428956661682176,1152921504606846976,9065737908494995456,52654090776777588736,244140625000000000000,951166013805414055936,3226266762397899821056,9774779120406941925376,26963771415920784510976},20] (* _Harvey P. Dale_, Aug 03 2021 *)

%o (Magma) [(6*n+2)^12: n in [0..20]]; // _Vincenzo Librandi_, May 05 2011

%Y Cf. A016788, A016933, A016934, A016935, A016936, A016937, A016938, A016939, A016940, A016941, A016942, A016943.

%Y Subsequence of A008456.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_