%I #19 Nov 01 2024 21:09:51
%S 1,125,729,2197,4913,9261,15625,24389,35937,50653,68921,91125,117649,
%T 148877,185193,226981,274625,328509,389017,456533,531441,614125,
%U 704969,804357,912673,1030301,1157625,1295029,1442897,1601613,1771561,1953125,2146689,2352637,2571353
%N a(n) = (4*n + 1)^3.
%D S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.3.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F Sum_{n>=0} 1/a(n) = Pi^3/64 + 7 zeta(3)/16.
%F a(0)=1, a(1)=125, a(2)=729, a(3)=2197, a(n)=4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4). - _Harvey P. Dale_, Sep 01 2013
%F G.f.: ( 1+121*x+235*x^2+27*x^3 ) / (x-1)^4 . - _R. J. Mathar_, Dec 03 2015
%F From _Stefano Spezia_, Nov 01 2024: (Start)
%F a(n) = A000578(A016813(n)).
%F E.g.f.: exp(x)*(1 + 124*x + 240*x^2 + 64*x^3). (End)
%t (4*Range[0,30]+1)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{1,125,729,2197},30] (* _Harvey P. Dale_, Sep 01 2013 *)
%Y Cf. A000578, A016813.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_