%I #31 Mar 08 2024 20:04:38
%S 4,1,5,8,8,8,3,0,8,3,3,5,9,6,7,1,8,5,6,5,0,3,3,9,2,7,2,8,7,4,9,0,5,9,
%T 4,0,8,4,5,3,0,0,0,8,0,6,1,6,1,5,3,1,5,2,4,7,2,4,0,8,0,0,5,6,9,6,0,3,
%U 6,1,7,3,1,8,1,8,1,6,8,2,9,3,6,3,5,1,7,9,9,6,1,9,7,8,5,1,2,1,2
%N Decimal expansion of log(64) = 6*log(2).
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
%H Harry J. Smith, <a href="/A016687/b016687.txt">Table of n, a(n) for n = 1..20000</a>
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F Equals 2*A016631 = 3*A016627 = 6*A002162. - _Alois P. Heinz_, Aug 07 2023
%F From _Peter Bala_, Mar 05 2024: (Start)
%F log(64) = 4 + Sum_{n >= 1} (-1)^(n+1)/(p(n)*p(n+1)), where p(n) = n*(2*n^2 + 1)/3 = A005900.
%F Continued fraction: log(64) = 4 + 1/(6 + (1*2)/(6 + (2*3)/(6 + (3*4)/(6 + (4*5)/(6 + ... ))))). See A142983. Cf. A016627. (End)
%e 4.158883083359671856503392728749059408453000806161531524724080056960361...
%t RealDigits[Log[64],10,120][[1]] (* _Harvey P. Dale_, May 06 2022 *)
%o (PARI) default(realprecision, 20080); x=log(64); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016687.txt", n, " ", d)); \\ _Harry J. Smith_, May 22 2009
%Y Cf. A002162, A005900, A016492 (continued fraction), A016627, A016631.
%K nonn,cons
%O 1,1
%A _N. J. A. Sloane_