%I #21 Dec 07 2019 12:18:18
%S 1,13421,198134223,2898705467483,42442845454886086,
%T 621401842151984058606,9097949506151746630368210,
%U 133203071884610819994409432410,1950226184559914695131839252162415
%N Gaussian binomial coefficient [ n,4 ] for q = -11.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015300/b015300.txt">Table of n, a(n) for n = 4..200</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (13421,18010982,-2179328822,-23776120181,25937424601).
%F G.f.: -x^4 / ( (x-1)*(11*x+1)*(121*x-1)*(1331*x+1)*(14641*x-1) ). - _R. J. Mathar_, Aug 03 2016
%t Table[QBinomial[n, 4, -11], {n, 4, 20}] (* _Vincenzo Librandi_, Oct 28 2012 *)
%o (Sage) [gaussian_binomial(n,4,-11) for n in range(4,13)] # _Zerinvary Lajos_, May 27 2009
%K nonn,easy
%O 4,2
%A _Olivier GĂ©rard_, Dec 11 1999
|