%I
%S 1,5,55,355,605,3905,6655,25205,42955,73205,201995,277255,472505
%N Numbers n such that n divides s(n), where s(1)=1, s(k)=5*s(k1)+k.
%C The sequence so far (for n > 1) is the smallest terms of the values of (5 * 11^i * 71^j) for i,j >= 0. Is there another term (prime?) in the product or can it be proved that all entries have this form?
%o (PARI) lista(nn) = {nb = 1000; for (n=1, nn, v = vector(nb, i, (5^(i+(n1)*nb+1)4*(i+(n1)*nb)5)/(16*(i+(n1)*nb))); w = select(n>(type(n) == "t_INT"), v, 1); for (k=1, #w, print1(w[k]+(n1)*nb, ", ")); kill(v););} \\ _Michel Marcus_, May 31 2014
%Y s(n) = A014827(n).
%K nonn
%O 1,2
%A _N. J. A. Sloane_, _Olivier GĂ©rard_
%E Comment and more terms from Larry Reeves (larryr(AT)acm.org), Mar 24 2000
%E a(10)a(13) from _Michel Marcus_, May 31 2014
