This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014830 a(1)=1; for n > 1, a(n) = 7*a(n-1) + n. 3

%I

%S 1,9,66,466,3267,22875,160132,1120932,7846533,54925741,384480198,

%T 2691361398,18839529799,131876708607,923136960264,6461958721864,

%U 45233711053065,316635977371473,2216451841600330

%N a(1)=1; for n > 1, a(n) = 7*a(n-1) + n.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (9,-15,7).

%F a(n) = (7^(n+1) - 6*n - 7)/36. - _Rolf Pleisch_, Oct 19 2010

%F a(1)=1, a(2)=9, a(3)=66; for n > 3, a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3). - _Harvey P. Dale_, Jul 22 2013

%F a(n) = Sum_{i=0..n-1} 6^i*binomial(n+1,n-1-i). - _Bruno Berselli_, Nov 13 2015

%e For n=5, a(5) = 1*15 + 6*20 + 6^2*15 + 6^3*6 + 6^4*1 = 3267. - _Bruno Berselli_, Nov 13 2015

%p a:=n->sum((7^(n-j)-1)/6,j=0..n): seq(a(n), n=1..19); # _Zerinvary Lajos_, Jan 15 2007

%t a[1] = 1; a[n_] := 7*a[n-1]+n; Table[a[n], {n, 10}] (* _Zak Seidov_, Feb 06 2011 *)

%t LinearRecurrence[{9, -15, 7}, {1, 9, 66}, 30] (* _Harvey P. Dale_, Jul 22 2013 *)

%Y Cf. A000400, A104712.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 12:25 EST 2019. Contains 329895 sequences. (Running on oeis4.)