%I #36 Dec 13 2018 12:44:07
%S 4,9,9,16,36,16,25,100,100,25,36,225,400,225,36,49,441,1225,1225,441,
%T 49,64,784,3136,4900,3136,784,64,81,1296,7056,15876,15876,7056,1296,
%U 81,100,2025,14400,44100,63504,44100,14400,2025,100,121,3025
%N Squares of elements in Pascal triangle (by row) that are not 1.
%C Number of ways to place 2k*(n-k) nonattacking ferses on a 2k X (2n-2k) board. - _Tricia Muldoon Brown_, Dec 12 2018
%H Vincenzo Librandi, <a href="/A014719/b014719.txt">Table of n, a(n) for n = 2..5461</a>
%H Tricia Muldoon Brown, <a href="https://arxiv.org/abs/1811.09606">The Problem of Pawns</a>, arXiv:1811.09606 [math.CO], 2018.
%F a(n) = A014410(n)^2. - _Sean A. Irvine_, Nov 18 2018
%e Triangle begins:
%e 4,
%e 9, 9,
%e 16, 36, 16,
%e 25, 100, 100, 25,
%e 36, 225, 400, 225, 36,
%e ...
%p T:=(n,k)->binomial(n,k)^2: seq(seq(T(n,k),k=1..n-1),n=2..11); # _Muniru A Asiru_, Dec 12 2018
%t Select[Flatten[Table[Binomial[n, i]^2, {n, 0, 25}, {i, 0, n}]], #>1 &] (* _Vincenzo Librandi_, Nov 19 2018 *)
%Y Cf. A007318, A014410.
%K nonn,tabl
%O 2,1
%A _Mohammad K. Azarian_
%E More terms from _Sean A. Irvine_, Nov 18 2018
%E Offset corrected by _Joerg Arndt_, Nov 19 2018