This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014556 Euler's "Lucky" numbers: n such that m^2-m+n is prime for m=0..n-1. 23

%I

%S 2,3,5,11,17,41

%N Euler's "Lucky" numbers: n such that m^2-m+n is prime for m=0..n-1.

%C Same as n such that 4n-1 is a Heegner number 1,2,3,7,11,19,43,67,163 (see A003173 and Conway and Guy's book).

%D J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 225.

%D J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 41, p. 16, Ellipses, Paris 2008.

%D I. N. Herstein and I. Kaplansky, Matters Mathematical, Chelsea, NY, 2nd. ed., 1978, see p. 38.

%D F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, pp. 88 and 144, 1983.

%H Harold M. Stark, <a href="https://doi.org/10.1307/mmj/1028999653">A complete determination of the complex quadratic fields of class-number one</a>, The Michigan Mathematical Journal 14.1 (1967): 1-27.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LuckyNumberofEuler.html">Lucky Number of Euler</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomial</a>

%F a(n) = (A003173(n+3) + 1)/4. - _M. F. Hasler_, Nov 03 2008

%t A003173 = Union[Select[-NumberFieldDiscriminant[Sqrt[-#]] & /@ Range[200], NumberFieldClassNumber[Sqrt[-#]] == 1 &] /. {4 -> 1, 8 -> 2}]; a[n_] := (A003173[[n + 4]] + 1)/4; Table[a[n], {n, 0, 5}] (* _Jean-François Alcover_, Jul 16 2012, after _M. F. Hasler_ *)

%t Select[Range[50],AllTrue[Table[m^2-m+#,{m,0,#-1}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, May 12 2017 *)

%o (PARI) is(n)=n>1 && qfbclassno(1-4*n)==1 \\ _Charles R Greathouse IV_, Jan 29 2013

%Y Cf. A000926, A003173, A092749, A117530, A117531.

%K nonn,fini,full,nice

%O 1,1

%A _Eric W. Weisstein_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 09:25 EDT 2019. Contains 327995 sequences. (Running on oeis4.)