login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014106 a(n) = n*(2*n + 3). 54

%I

%S 0,5,14,27,44,65,90,119,152,189,230,275,324,377,434,495,560,629,702,

%T 779,860,945,1034,1127,1224,1325,1430,1539,1652,1769,1890,2015,2144,

%U 2277,2414,2555,2700,2849,3002,3159,3320,3485,3654,3827,4004,4185,4370

%N a(n) = n*(2*n + 3).

%C If Y is a 2-subset of a 2n-set X then, for n >= 1, a(n-1) is the number of (2n-2)-subsets of X intersecting Y. - _Milan Janjic_, Nov 18 2007

%C This sequence can also be derived from 1*(2+3)=5, 2*(3+4)=14, 3*(4+5)=27, and so forth. - _J. M. Bergot_, May 30 2011

%C Consider the partitions of 2n into exactly two parts. Then a(n) is the sum of all the parts in the partitions of 2n + the number of partitions of 2n + the total number of partition parts of 2n. - _Wesley Ivan Hurt_, Jul 02 2013

%C a(n) is the number of self-intersecting points of star polygon {(2*n+3)/(n+1)}. - _Bui Quang Tuan_, Mar 25 2015

%C Bisection of A000096. - _Omar E. Pol_, Dec 16 2016

%C a(n+1) is the number of function calls required to compute Ackermann's function ack(2,n). - _Olivier GĂ©rard_, May 11 2018

%C a(n-1) is the least denominator d > n of the best rational approximation of sqrt(n^2-2) by x/d (see example and PARI code). - _Hugo Pfoertner_, Apr 30 2019

%C The number of cells in a loose n X n+1 rectangular spiral where n is even. See loose rectangular spiral image. - _Jeff Bowermaster_, Aug 05 2019

%D Jolley, Summation of Series, Dover (1961).

%H Vincenzo Librandi, <a href="/A014106/b014106.txt">Table of n, a(n) for n = 0..920</a>

%H Jeff Bowermaster, <a href="/A014106/a014106.png">Loose Rectangular Spiral</a>

%H S. Falcon, <a href="http://dx.doi.org/10.4236/am.2014.515216">Relationships between Some k-Fibonacci Sequences</a>, Applied Mathematics, 2014, 5, 2226-2234 (scirp.org/journal/am).

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StarPolygon.html">Star Polygon</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) - 1 = A091823(n). - _Howard A. Landman_, Mar 28 2004

%F A014107(-n) = a(n), A000384(n+1) = a(n)+1. - _Michael Somos_, Nov 06 2005

%F G.f.: x*(5 - x)/(1 - x)^3. - _Paul Barry_, Feb 27 2003

%F E.g.f: x*(5 + 2*x)*exp(x). - _Michael Somos_, Nov 06 2005

%F a(n) = a(n-1) + 4*n + 1, n > 0. - _Vincenzo Librandi_, Nov 19 2010

%F a(n) = 4*A000217(n) + n. - _Bruno Berselli_, Feb 11 2011

%F Sum_{n>=1} 1/a(n) = 8/9 -2*log(2)/3 = 0.4267907685155920.. [Jolley eq. 265]

%e a(5-1) = 44: The best approximation of sqrt(5^2-2) = sqrt(23) by x/d with d <= k is 24/5 for all k < 44, but sqrt(23) ~= 211/44 is the first improvement. - _Hugo Pfoertner_, Apr 30 2019

%p A014106 := proc(n) n*(2*n+3) ; end proc: # _R. J. Mathar_, Feb 13 2011

%p seq(k*(2*k+3), k=1..100); # _Wesley Ivan Hurt_, Jul 02 2013

%t Table[n (2 n + 3), {n, 0, 120}] (* _Michael De Vlieger_, Apr 02 2015 *)

%o (PARI) a(n)=2*n^2+3*n

%o (PARI) \\ least denominator > n in best rational approximation of sqrt(n^2-2)

%o for(n=2,47,for(k=n,oo,my(m=denominator(bestappr(sqrt(n^2-2),k)));if(m>n,print1(k,", ");break(1)))) \\ _Hugo Pfoertner_, Apr 30 2019

%o (MAGMA) [n*(2*n+3): n in [0..50]]; // _Vincenzo Librandi_, Apr 25 2011

%Y Cf. A091823. See A110325 for another version.

%Y Cf. numbers of the form n*(d*n+10-d)/2: A008587, A056000, A028347, A140090, A028895, A045944, A186029, A007742, A022267, A033429, A022268, A049452, A186030, A135703, A152734, A139273.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 03:27 EST 2019. Contains 329872 sequences. (Running on oeis4.)