login
Inverse of 15th cyclotomic polynomial.
1

%I #33 Dec 14 2023 05:51:51

%S 1,1,1,0,0,-1,-1,-1,0,0,0,0,0,0,0,1,1,1,0,0,-1,-1,-1,0,0,0,0,0,0,0,1,

%T 1,1,0,0,-1,-1,-1,0,0,0,0,0,0,0,1,1,1,0,0,-1,-1,-1,0,0,0,0,0,0,0,1,1,

%U 1,0,0,-1,-1,-1,0,0,0,0,0,0,0,1,1,1,0,0,-1

%N Inverse of 15th cyclotomic polynomial.

%C Periodic with period length 15. - _Ray Chandler_, Apr 03 2017

%H Vincenzo Librandi, <a href="/A014024/b014024.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, -1, 1, -1, 0, 1, -1).

%H <a href="/index/Pol#poly_cyclo_inv">Index to sequences related to inverse of cyclotomic polynomials</a>

%F G.f.: 1 / ( 1-x+x^3-x^4+x^5-x^7+x^8 ). - _R. J. Mathar_, Mar 11 2011

%p with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);

%t CoefficientList[Series[1/Cyclotomic[15, x], {x, 0, 100}], x] (* _Vincenzo Librandi_, Apr 03 2014 *)

%t LinearRecurrence[{1, 0, -1, 1, -1, 0, 1, -1},{1, 1, 1, 0, 0, -1, -1, -1},81] (* _Ray Chandler_, Sep 15 2015 *)

%o (PARI) Vec(1/polcyclo(15)+O(x^99)) \\ _Charles R Greathouse IV_, Mar 24 2014

%o (Magma) &cat[[1,1,1,0,0,-1,-1,-1,0,0,0,0,0,0,0]: n in [0..10]]; // _Vincenzo Librandi_, Apr 03 2014

%K sign,easy

%O 0,1

%A _Simon Plouffe_