login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013655 a(n) = F(n+1) + L(n), where F(n) and L(n) are Fibonacci and Lucas numbers, respectively. 28

%I #139 Feb 14 2024 08:43:01

%S 3,2,5,7,12,19,31,50,81,131,212,343,555,898,1453,2351,3804,6155,9959,

%T 16114,26073,42187,68260,110447,178707,289154,467861,757015,1224876,

%U 1981891,3206767,5188658,8395425,13584083,21979508,35563591,57543099,93106690,150649789,243756479

%N a(n) = F(n+1) + L(n), where F(n) and L(n) are Fibonacci and Lucas numbers, respectively.

%C Apart from initial term, same as A001060.

%C Pisano period lengths same as for A001060. - _R. J. Mathar_, Aug 10 2012

%C The beginning of this sequence is the only sequence of four consecutive primes in a Fibonacci-type sequence. - _Franklin T. Adams-Watters_, Mar 21 2015

%C (a(2*k), a(2*k+1)) give for k >= 0 the proper positive solutions of one of two families (or classes) of solutions (x, y) of the indefinite binary quadratic form x^2 + x*y - y^2 of discriminant 5 representing 11. The other family of such solutions is given by (x2, y2) = (b(2*k), b(2*k+1)) with b = A104449. See the formula in terms of Chebyshev S polynomials S(n, 3) = A001906(n+1) below, which follows from the fundamental solution (3, 2) by applying positive powers of the automorphic matrix A^k = Matrix([A(k), B(k)], [B(k), A(k+1)]), with A(k) = S(k-1, 3) - S(k-2, 3) and B(k) = S(k-1, 3). See also A089270 with the Alfred Brousseau link with D = 11. - _Wolfdieter Lang_, May 28 2019

%H G. C. Greubel, <a href="/A013655/b013655.txt">Table of n, a(n) for n = 0..2500</a>

%H Mark W. Coffey, James L. Hindmarsh, Matthew C. Lettington, John Pryce, <a href="http://arxiv.org/abs/1502.03085">On Higher Dimensional Interlacing Fibonacci Sequences, Continued Fractions and Chebyshev Polynomials</a>, arXiv:1502.03085 [math.NT], 2015 (see p. 31).

%H Rigoberto Flórez, Robinson A. Higuita, Antara Mukherjee, <a href="https://arxiv.org/abs/1804.02481">The Geometry of some Fibonacci Identities in the Hosoya Triangle</a>, arXiv:1804.02481 [math.NT], 2018.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Shaoxiong Yuan, <a href="https://arxiv.org/abs/1907.12459">Generalized Identities of Certain Continued Fractions</a>, arXiv:1907.12459 [math.NT], 2019.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%F a(n) = A000045(n+1) + A000032(n).

%F a(n) = a(n-1) + a(n-2).

%F a(n) = F(n+3) - F(n-2) for n>1, where F=A000045. - _Gerald McGarvey_, Jul 10 2004

%F a(n) = 2*F(n-3) + F(n) for n>1. - _Zerinvary Lajos_, Oct 05 2007

%F G.f.: (3-x)/(1-x-x^2). - _Philippe Deléham_, Nov 19 2008

%F a(n) = Sum_{k = n-3..n+1} F(k). - _Gary Detlefs_, Dec 30 2012

%F a(n) = ((3*sqrt(5)+1)*(((1+sqrt(5))/2)^n)+(3*sqrt(5)-1)*(((1-sqrt(5))/2)^n))/(2*sqrt(5)). - _Bogart B. Strauss_, Jul 19 2013

%F a(n) = F(n+3) + F(n-3) - 3*F(n) for n>1. - _Bruno Berselli_, Dec 29 2016

%F Bisection: a(2*k) = 3*S(k, 3) - 4*S(k-1, 3), a(2*k+1) = 2*S(k, 3) + S(k-1, 3), for k >= 0, with the Chebyshev S(n, 3) polynomials from A001906(n+1) for n >= -1. - _Wolfdieter Lang_, May 28 2019

%F a(3n + 2)/a(3n - 1) = continued fraction 4,4,4,...,4,-5 (that's n 4's followed by a single -5). - _Greg Dresden_ and _Shaoxiong Yuan_, Jul 16 2019

%F E.g.f.: ((- 1 + 3*sqrt(5))*exp((1/2)*(1 - sqrt(5))*x) + (1 + 3*sqrt(5))*exp((1/2)*(1 + sqrt(5))*x))/(2*sqrt(5)). - _Stefano Spezia_, Jul 17 2019

%F a(n) = (F(3n+1) - F(n+1)^3)/(F(n)^2) for n>1, where F(n) = A000045(n). - _Michael Tulskikh_, Jul 22 2020

%F a(n) = 3 * Sum_{k=0..n-2} A168561(n-2,k) + 2 * Sum_{k=0..n-1} A168561(n-1,k), n>0. - _R. J. Mathar_, Feb 14 2024

%p with(combinat): a:=n->2*fibonacci(n-1)+fibonacci(n+2): seq(a(n), n=0..40); # _Zerinvary Lajos_, Oct 05 2007

%t LinearRecurrence[{1, 1}, {3, 2}, 40] (* or *)

%t Table[Fibonacci[n + 1] + LucasL[n], {n, 0, 40}] (* or *)

%t Table[Fibonacci[n + 3] + Fibonacci[n - 3] - 3*Fibonacci[n], {n,2,40}] (* _Bruno Berselli_, Dec 30 2016 *)

%o (Magma) [2*Fibonacci(n-3)+Fibonacci(n): n in [2..41]]; // _Vincenzo Librandi_, Apr 16 2011

%o (Magma) [GeneralizedFibonacciNumber(3, 2, n): n in [0..39]]; // _Arkadiusz Wesolowski_, Mar 16 2016

%o (PARI) a(n)=([0,1; 1,1]^n*[3;2])[1,1] \\ _Charles R Greathouse IV_, Sep 24 2015

%o (PARI) a(n)=2*fibonacci(n-3) + fibonacci(n) \\ _Charles R Greathouse IV_, Sep 24 2015

%Y Cf. A000045, A001060, A001906, A089270, A104449.

%K nonn,easy

%O 0,1

%A _Mohammad K. Azarian_

%E Definition corrected by _Gary Detlefs_, Dec 30 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 20:26 EDT 2024. Contains 371781 sequences. (Running on oeis4.)