%I #11 Nov 01 2018 16:03:18
%S 14,19,22,23,29,33,34,45,47,52,53,54,59,60,62,69,70,71,77,78,79,85,95,
%T 96,98,107,114,117,118,119,125,127,138,140,141,142,149,153,154,164,
%U 165,167,173,178,187,188,189,192,194,202,205,206,216,218,219,220,221,222,223,229
%N Period of continued fraction for sqrt(n) contains exactly two 1's.
%D Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors!).
%H Robert Israel, <a href="/A013649/b013649.txt">Table of n, a(n) for n = 1..8300</a>
%p filter:= n -> not issqr(n) and numboccur(1, numtheory:-cfrac(sqrt(n),periodic,quotients)[2])=2:
%p select(filter, [$1..500]); # _Robert Israel_, Nov 01 2018
%t Select[ Range@ 1900, !IntegerQ[ Sqrt@ #] && Count[ ContinuedFraction[ Sqrt@ #][[2]], 1] == 2 &] (* _Robert G. Wilson v_, Jul 03 2011 *)
%K nonn
%O 1,1
%A _Clark Kimberling_