Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jan 28 2023 12:20:49
%S 1,0,1,-1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,-1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,
%T 0,0,1,0,0,1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,-1,0,1,1,1,1,1,1,1,
%U 1,1,1,1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,0,1,-1,1,0,-1,1,1,0,0,0,0
%N Irregular triangle of coefficients of cyclotomic polynomial Phi_n(x) (exponents in decreasing order).
%C We follow Maple in defining Phi_0 to be x; it could equally well be taken to be 1.
%D E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968; see p. 90.
%D Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 325.
%D K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, p. 194.
%H Antti Karttunen, <a href="/A013596/b013596.txt">Table of n, a(n) for n = 0..45566, rows 0..385 flattened</a>
%e Phi_0 = x --> Row 0: [1, 0]
%e Phi_1 = x - 1 --> Row 1: [1, -1]
%e Phi_2 = x + 1 --> Row 2: [1, 1]
%e Phi_3 = x^2 + x + 1 --> Row 3: [1, 1, 1]
%e Phi_4 = x^2 + 1 --> Row 4: [1, 0, 1]
%e etc. After row zero, each row n has A039649(n) terms.
%p with(numtheory): [ seq(cyclotomic(n,x), n=0..48) ];
%t Join[{1, 0}, Table[ CoefficientList[ Cyclotomic[n, x], x] // Reverse, {n, 1, 16}] // Flatten] (* _Jean-François Alcover_, Dec 11 2012 *)
%o (PARI)
%o A013595row(n) = { if(!n, p=x, p = polcyclo(n)); Vecrev(p); }; \\ This function from _Michel Marcus_'s code for A013595.
%o n=0; for(r=0,385,v=A013595row(r);k=length(v);while(k>0,write("b013596.txt", n, " ", v[k]);n=n+1;k=k-1)); \\ _Antti Karttunen_, Aug 13 2017
%Y Version with reversed rows: A013595.
%Y Cf. A039649, A160340.
%K sign,easy,nice,tabf
%O 0,3440
%A _N. J. A. Sloane_
%E Example section edited by _Antti Karttunen_, Aug 13 2017