login
[ n(n-1)(n-2)(n-3)/17 ].
1

%I #13 Oct 18 2022 15:28:12

%S 0,0,0,0,1,7,21,49,98,177,296,465,698,1009,1413,1927,2569,3360,4320,

%T 5472,6840,8449,10327,12501,15001,17858,21105,24776,28905,33530,38689,

%U 44421,50767,57769,65472,73920

%N [ n(n-1)(n-2)(n-3)/17 ].

%H <a href="/index/Rec#order_21">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -4, 6, -4, 1).

%F From _Chai Wah Wu_, Aug 02 2020: (Start)

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-17) - 4*a(n-18) + 6*a(n-19) - 4*a(n-20) + a(n-21) for n > 20.

%F G.f.: x^4*(-x^16 - 3*x^15 + x^14 - 3*x^13 - x^12 - 2*x^11 - x^10 - 4*x^8 - x^6 - 2*x^5 - x^4 - 3*x^3 + x^2 - 3*x - 1)/(x^21 - 4*x^20 + 6*x^19 - 4*x^18 + x^17 - x^4 + 4*x^3 - 6*x^2 + 4*x - 1). (End)

%o (PARI) a(n)=n*(n-1)*(n-2)*(n-3)\17 \\ _Charles R Greathouse IV_, Oct 18 2022

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_.