%I #32 Aug 06 2024 22:48:26
%S 1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,
%T 4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,
%U 7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1
%N Simple periodic sequence: repeat 1,2,3,4,5,6,7,8,9,10.
%C Partial sums are given by A130488(n)+n+1. - _Hieronymus Fischer_, Jun 08 2007
%C Continued fraction expansion of (232405+sqrt(71216963807))/348378. [From _Klaus Brockhaus_, May 15 2010]
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,1).
%F a(n) = 1 + (n mod 10) - _Paolo P. Lava_, Nov 21 2006
%F From _Hieronymus Fischer_, Jun 08 2007: (Start)
%F a(n) = A010879(n)+1.
%F G.f.: (Sum_{k=0..9} (k+1)*x^k)/(1-x^10).
%F G.f.: (10x^11-11x^10+1)/((1-x^10)(1-x)^2). (End)
%t PadRight[{},120,Range[10]] (* _Harvey P. Dale_, Feb 22 2015 *)
%o (Python) def a(n): return n % 10 + 1 # _Paul Muljadi_, Aug 06 2024
%Y Cf. A010872, A010873, A010874, A010875, A010876, A010877, A010878, A004526, A002264, A002265, A002266.
%Y Cf. A177933 (decimal expansion of (232405+sqrt(71216963807))/348378). [From _Klaus Brockhaus_, May 15 2010]
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.
%E More terms from _Klaus Brockhaus_, May 15 2010