login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010816 Expansion of Product_{k>=1} (1 - x^k)^3. 15

%I

%S 1,-3,0,5,0,0,-7,0,0,0,9,0,0,0,0,-11,0,0,0,0,0,13,0,0,0,0,0,0,-15,0,0,

%T 0,0,0,0,0,17,0,0,0,0,0,0,0,0,-19,0,0,0,0,0,0,0,0,0,21,0,0,0,0,0,0,0,

%U 0,0,0,-23,0,0,0,0,0,0,0,0,0,0,0,25,0,0,0,0,0,0,0,0,0,0,0,0,-27,0,0,0,0,0,0,0

%N Expansion of Product_{k>=1} (1 - x^k)^3.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Also, number of different partitions of n into parts of -3 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004

%D T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 117, Problem 22.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.14).

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003, p. 285, Theorem 357 (Jacobi).

%D D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 410, Problem 23.

%D S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 267 MR0099904 (20 #6340)

%H Seiichi Manyama, <a href="/A010816/b010816.txt">Table of n, a(n) for n = 0..10000</a>

%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071)

%H S. R. Finch, <a href="https://arxiv.org/abs/math/0701251">Powers of Euler's q-Series</a>, arXiv:math/0701251 [math.NT], 2007.

%H A. Fink, R. K. Guy and M. Krusemeyer, <a href="https://doi.org/10.11575/cdm.v3i2.61940">Partitions with parts occurring at most thrice</a>, Contributions to Discrete Mathematics, Vol 3, No 2 (2008).

%H V. Kotesovec, <a href="http://oeis.org/A258232/a258232_2.pdf">The integration of q-series</a>

%H M. Newman, <a href="http://dx.doi.org/10.1016/S1385-7258(56)50028-5">A table of the coefficients of the powers of eta(tau)</a>, Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>

%F G.f.: Product_{k>=1} (1-x^k)^3 = Sum_{n>=0} (-1)^n*(2*n+1)*x^(n*(n+1)/2) (Jacobi).

%F Given g.f. A(x), then q * A(q^8) = eta(q^8)^3 = theta_2(q^4)*theta_3*(q^4)*theta_4(q^4) / 2 = theta_1'(q^4) / (2*Pi). - _Michael Somos_, Nov 08 2005

%F Given g.f. A(x), then x*A(x)^8 is g.f. for A000594.

%F a(n) = b(8*n + 1) where b() is multiplicative with b(p^e) = 0 if e odd, b(2^e) = 0^e, b(p^e) = p^(e/2) if p == 1 (mod 4), b(p^e) = (-p)^(e/2) if p == 3 (mod 4). - _Michael Somos_, Aug 22 2006

%F Expansion of f(-x)^3 in powers of x where f() is a Ramanujan theta function.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 2^(9/2) (t/i)^(3/2) f(t) where q = exp(2 Pi i t). - _Michael Somos_, Sep 09 2007

%F a(3*n + 2) = a(5*n + 2) = a(5*n + 4) = a(9*n + 4) = a(9*n + 7) = 0. a(9*n + 1) = -3 * a(n). a(25*n + 3) = 5 * a(n). - _Michael Somos_, Sep 09 2007

%F a(3*n) = A116916(n).

%F a(n) = (t*(t+1)-2*n-1)*(t-r)*(-1)^(t+1), where t = floor(sqrt(2*(n+1))+1/2) and r = floor(sqrt(2*n)+1/2). - _Mikael Aaltonen_, Jan 17 2015

%F a(0) = 1, a(n) = -(3/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 26 2017

%F G.f.: exp(-3*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018

%e G.f. = 1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 - 11*x^15 + 13*x^21 - 15*x^28 + ...

%e G.f. for b(n): = q - 3*q^9 + 5*q^25 - 7*q^49 + 9*q^81 - 11*q^121 + 13*q^169 + ...

%p S:= series(mul(1-x^k,k=1..200)^3,x,201):

%p seq(coeff(S,x,j),j=0..200); # _Robert Israel_, Feb 01 2018

%t a[ n_] := SeriesCoefficient[ EllipticThetaPrime[ 1, 0, x^(1/2)] / (2 x^(1/8)), {x, 0, n}]; (* _Michael Somos_, Oct 22 2011 *)

%t a[ n_] := With[ {m = 8 n + 1}, If[m > 0 && OddQ[ Length @ Divisors @ m], Sqrt[m] KroneckerSymbol[-4, Sqrt[m]], 0]]; (* _Michael Somos_, Aug 26 2015 *)

%t CoefficientList[QPochhammer[q]^3 + O[q]^100, q] (* _Jean-Fran├žois Alcover_, Nov 25 2015 *)

%t a[ n_] := With[ {x = Sqrt[8 n + 1]}, If[ IntegerQ[ x], (-1)^Quotient[ x, 2] x, 0]]; (* _Michael Somos_, Feb 01 2018 *)

%t a[ n_] := If[ n < 1, Boole[ n == 0], Times @@ (If[ # == 2 || OddQ[ #2], 0, (KroneckerSymbol[ -4, #] #)^(#2/2)] & @@@ FactorInteger[ 8 n + 1])]; (* _Michael Somos_, Feb 01 2018 *)

%o (PARI) {a(n) = my(x); if( n<0, 0, if( issquare( 8*n + 1, &x), (-1)^(x\2) * x))}; /* _Michael Somos_, Nov 08 2005 */

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3, n))};

%o (Julia) # DedekindEta is defined in A000594.

%o A010816List(len) = DedekindEta(len, 3)

%o A010816List(39) |> println # _Peter Luschny_, Mar 10 2018

%Y Cf. A000594, A116916, A258407.

%K sign,easy,nice

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 14:15 EDT 2021. Contains 346334 sequences. (Running on oeis4.)