login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010052 Characteristic function of squares: 1 if n is a square else 0. 179

%I

%S 1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

%T 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,

%U 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0

%N Characteristic function of squares: 1 if n is a square else 0.

%C Also parity of the divisor function A000005 if n >= 1. - _Omar E. Pol_, Jan 14 2012

%C This sequence can be considered as k=1 analog of A025426 (k=2), A025427 (k=3), A025428 (k=4); see also A000161. - _M. F. Hasler_, Jan 25 2013

%C Also, the decimal expansion of sum(n >= 0) 1/(10^n)^n. - _Eric Desbiaux_, Mar 15 2009, rephrased and simplified by _M. F. Hasler_, Jan 26 2013

%D J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, pp. 3-4, also p. 166, Ex. 5.5.1.

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, Problem 20.

%D D Christopher, T Nadu, Partitions with Fixed Number of Sizes, Journal of Integer Sequences, 15 (2015), #15.11.5.

%D Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

%H Charles R Greathouse IV, <a href="/A010052/b010052.txt">Table of n, a(n) for n = 0..10000</a>

%H Robert Price, <a href="/A010052/a010052.txt">Comments on A010052 concerning Elementary Cellular Automata</a>, Jan 29 2016

%H Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F a(n) = floor(sqrt(n)) - floor(sqrt(n-1)), for n > 0.

%F a(n) = A000005(n) mod 2, n>0. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001

%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-w)^2 - (v-w)*(v+w-1) - _Michael Somos_, Jul 19 2004

%F Dirichlet g.f.: zeta(2s). - _Franklin T. Adams-Watters_, Sep 11 2005

%F G.f. (theta_3(0,x) + 1)/2, where theta_3 is a Jacobi theta function. - _Franklin T. Adams-Watters_, Jun 19 2006. See A000122 for theta_3.

%F a(n) = f(n,0) with f(x,y) = if x>0 then f(x-2*y-1,y+1) else 0^(-x). - _Reinhard Zumkeller_, Sep 26 2008

%F a(n) = sumdiv(n,d,(-1)^bigomega(d)), for n >= 1. - _Benoit Cloitre_, Oct 25 2009

%F a(n) <= A093709(n). - _Reinhard Zumkeller_, Nov 14 2009

%F a(A000290(n)) = 1; a(A000037(n)) = 0. - _Reinhard Zumkeller_, Jun 20 2011

%F a(n) = 0 ^ A053186(n). - _Reinhard Zumkeller_, Feb 12 2012

%F a(n) = A063524(A007913(n)), for n > 0. - _Reinhard Zumkeller_, Jul 09 2014

%F a(n) = -(-1)^n * A258998(n) unless n = 0. 2 * a(n) = A000122(n) unless n = 0. - _Michael Somos_, Jun 16 2015

%e G.f. = 1 + x + x^4 + x^9 + x^16 + x^25 + x^36 + x^49 + x^64 + x^81 + ...

%p readlib(issqr): f := i->if issqr(i) then 1 else 0; fi; [ seq(f(i),i=0..100) ];

%t lst = {}; Do[AppendTo[lst, 2*Sum[Floor[n/k] - Floor[(n - 1)/k], {k, Floor[Sqrt[n]]}] - DivisorSigma[0, n]], {n, 93}]; Prepend[lst, 1] (* _Eric Desbiaux_, Jan 29 2012 *)

%t Table[If[IntegerQ[Sqrt[n]],1,0],{n,0,100}] (* _Harvey P. Dale_, Jul 19 2014 *)

%t a[n_] := SeriesCoefficient[1/(1 - q)* QHypergeometricPFQ[{-q, -q}, {-(q^2)}, -q, -q], {q, 0, Abs@n}] (* _Mats Granvik_, Jan 01 2016 *)

%t Range[0, 120] /. {n_ /; IntegerQ@ Sqrt@ n -> 1, n_ /; n != 1 -> 0} (* _Michael De Vlieger_, Jan 02 2016 *)

%o (PARI) {a(n) = issquare(n)};

%o (PARI) a(n)=if(n<1,1,sumdiv(n,d,(-1)^bigomega(d))) \\ _Benoit Cloitre_, Oct 25 2009

%o (PARI) a(n) = if (n<1, 1, direuler( p=2, n, 1/ (1 - X^2 ))[n]); \\ _Michel Marcus_, Mar 08 2015

%o (Haskell)

%o a010052 n = fromEnum $ a000196 n ^ 2 == n

%o -- _Reinhard Zumkeller_, Jan 26 2012, Feb 20 2011

%o a010052_list = concat (iterate (\xs -> xs ++ [0,0]) [1])

%o -- _Reinhard Zumkeller_, Apr 27 2012

%Y Cf. A008836.

%Y Column k=1 of A243148.

%Y Cf. A005369.

%Y Cf. A063524, A007913.

%Y Cf. A000122, A258998.

%K nonn,nice,easy,mult

%O 0,1

%A _N. J. A. Sloane_

%E More terms from _Franklin T. Adams-Watters_, Jun 19 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 21:23 EST 2016. Contains 279011 sequences.