login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f.: 1/cos(tanh(x)) (even-indexed coefficients only).
7

%I #24 Jul 21 2018 20:54:52

%S 1,1,-3,-3,665,-25031,607893,13065717,-3684215119,322746228337,

%T -2173907680851,-5317484317809939,1007358319257596489,

%U 46704901267812186793,-111828938184578058229947,54497429277597236190513381,-19349766542166780916394521759

%N Expansion of e.g.f.: 1/cos(tanh(x)) (even-indexed coefficients only).

%H G. C. Greubel, <a href="/A009011/b009011.txt">Table of n, a(n) for n = 0..200</a> (terms 0..50 from Vincenzo Librandi)

%e 1/cos(tanh x) = 1+ 1*x^2/2! -3*x^4/4! -3*x^6/6! +665*x^8/8! -25031*x^10/10! +... = 1 +x^2/2 -x^4/8 -x^6/240 +19*x^8/1152 -25031*x^10/3628800 +...

%t f[x_] := Sec@Tanh[x]; Table[Derivative[2*n][f][0], {n, 0, 16}] (* _Arkadiusz Wesolowski_, Aug 18 2012 *)

%t With[{nmax = 50}, CoefficientList[Series[1/(Cos[Tanh[x]]), {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; -1 ;; 2]] (* _G. C. Greubel_, Jul 21 2018 *)

%o (PARI) x='x+O('x^50); v=Vec(serlaplace(1/cos(tanh(x)))); vector(#v\2,n,v[2*n-1]) \\ _G. C. Greubel_, Jul 21 2018

%K sign

%O 0,3

%A _R. H. Hardin_

%E Extended with signs by _Olivier Gérard_, Mar 15 1997

%E a(15), a(16) from _Arkadiusz Wesolowski_, Aug 18 2012