This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008852 Numbers n such that n^2 and n have same last 2 digits. 2

%I

%S 0,1,25,76,100,101,125,176,200,201,225,276,300,301,325,376,400,401,

%T 425,476,500,501,525,576,600,601,625,676,700,701,725,776,800,801,825,

%U 876,900,901,925,976,1000,1001,1025,1076,1100,1101,1125,1176,1200,1201

%N Numbers n such that n^2 and n have same last 2 digits.

%D L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 459.

%H G. C. Greubel, <a href="/A008852/b008852.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F a(4n)=100*n, a(4n+1)=100*n+1, a(4n+2)=100*n+25, a(4n+3)=100*n+76. - _Franklin T. Adams-Watters_, Mar 13 2006

%F From _G. C. Greubel_, Sep 13 2019: (Start)

%F a(n) = a(n-1) + a(n-4) - a(n-5).

%F G.f.: x*(1 +24*x +51*x^2 +24*x^3)/((1-x)*(1-x^4)). (End)

%p for n to 2000 do if n^2 - n mod 100 = 0 then print(n); fi; od;

%t Select[Range[1200], Mod[ #, 100] == Mod[ #^2, 100] &] (* _Stefan Steinerberger_, Apr 15 2006 *)

%t LinearRecurrence[{1,0,0,1,-1}, {0,1,25,76,100}, 60] (* _G. C. Greubel_, Sep 13 2019 *)

%o (PARI) my(x='x+O('x^60)); concat([0], Vec(x*(1 +24*x +51*x^2 +24*x^3)/((1-x)*(1-x^4)))) \\ _G. C. Greubel_, Sep 13 2019

%o (MAGMA) R<x>:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1 +24*x +51*x^2 +24*x^3)/((1-x)*(1-x^4)) )); // _G. C. Greubel_, Sep 13 2019

%o (Sage) [n for n in (0..1250) if mod(n,100)==mod(n^2,100)] # _G. C. Greubel_, Sep 13 2019

%o (GAP) a:=[0,1,25,76,100];; for n in [6..60] do a[n]:=a[n-1]+a[n-4]-a[n-5]; od; a; # _G. C. Greubel_, Sep 13 2019

%K nonn,easy,base

%O 1,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 00:54 EST 2019. Contains 329885 sequences. (Running on oeis4.)