login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+5)^n.
10

%I #43 Oct 25 2022 19:32:15

%S 1,6,49,512,6561,100000,1771561,35831808,815730721,20661046784,

%T 576650390625,17592186044416,582622237229761,20822964865671168,

%U 799006685782884121,32768000000000000000,1430568690241985328321,66249952919459433152512,3244150909895248285300369

%N a(n) = (n+5)^n.

%H Vincenzo Librandi, <a href="/A008786/b008786.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f.(x) for b(n) = n^(n-5) = a(n-5): T - (15/16)*T^2 + (85/216)T^3 - (25/288)*T^4 + (1/120)*T^5, where T=T(x) is Euler's tree function. - _Len Smiley_, Nov 17 2001

%F E.g.f.: LambertW(-x)^5/((-x)^5*(1+LambertW(-x))). - _Vladeta Jovovic_, Nov 07 2003

%F E.g.f.: (1/4)*d/dx(LambertW(-x)/(-x))^4). - _Wolfdieter Lang_, Oct 25 2022

%t Table[(n+5)^n,{n,0,20}] (* _Vladimir Joseph Stephan Orlovsky_, Dec 26 2010 *)

%o (Magma) [(n+5)^n: n in [0..20]]; // _Vincenzo Librandi_, Jun 11 2013

%o (PARI) vector(20, n, (n+4)^(n-1)) \\ _G. C. Greubel_, Sep 11 2019

%o (Sage) [(n+5)^n for n in (0..20)] # _G. C. Greubel_, Sep 11 2019

%o (GAP) List([0..20], n-> (n+5)^n); # _G. C. Greubel_, Sep 11 2019

%Y Cf. A000169, A000272, A000312, A007778, A007830, A008785, this sequence, A008787, A008788, A008789, A008790, A008791.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_