The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008643 Molien series for group of 4 X 4 upper triangular matrices over GF(2). 3

%I

%S 1,1,2,2,4,4,6,6,10,10,14,14,20,20,26,26,35,35,44,44,56,56,68,68,84,

%T 84,100,100,120,120,140,140,165,165,190,190,220,220,250,250,286,286,

%U 322,322,364,364,406,406,455,455,504,504,560,560,616,616,680,680,744

%N Molien series for group of 4 X 4 upper triangular matrices over GF(2).

%C Number of partitions of n into parts 1, 2, 4 and 8. - _Ilya Gutkovskiy_, May 24 2017

%D D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

%H Alois P. Heinz, <a href="/A008643/b008643.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=233">Encyclopedia of Combinatorial Structures 233</a>

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1).

%F G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)).

%F a(n) = floor(((n+14)*(3*(n+1)*(-1)^n + 2*n^2 + 17*n + 57) + 24*(floor(n/2) + 1)*(-1)^floor(n/2))/768). - _Tani Akinari_, Jun 16 2013

%F a(n) ~ 1/384*n^3. - _Ralf Stephan_, Apr 29 2014

%p a:= proc(n) local m, r; m := iquo(n, 8, 'r'); r:= iquo(r,2)+1; ([11, 17, 26, 35][r]+ (9+ 3*r+ 4*m) *m) *m/3+ [1, 2, 4, 6][r] end: seq(a(n), n=0..100); # _Alois P. Heinz_, Oct 06 2008

%t CoefficientList[1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)) + O[x]^65, x] (* _Jean-François Alcover_, May 29 2015 *)

%t LinearRecurrence[{1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1}, {1,1,2,2,4,4,6,6,10,10,14,14,20,20,26}, 65] (* _Ray Chandler_, Jul 15 2015 *)

%o (PARI) my(x='x+O('x^65)); Vec(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8))) \\ _G. C. Greubel_, Feb 01 2020

%o (MAGMA) R<x>:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (&*[1/(1-x^(2^j)): j in [0..3]]) )); // _G. C. Greubel_, Feb 01 2020

%o (Sage)

%o def A077952_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)) ).list()

%o A077952_list(65) # _G. C. Greubel_, Feb 01 2020

%Y Cf. A008804, A088932 (partial sums).

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 12:57 EDT 2021. Contains 345129 sequences. (Running on oeis4.)