login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n/3)*ceiling(n/3).
3

%I #31 Feb 07 2024 09:36:29

%S 0,0,0,1,2,2,4,6,6,9,12,12,16,20,20,25,30,30,36,42,42,49,56,56,64,72,

%T 72,81,90,90,100,110,110,121,132,132,144,156,156,169,182,182,196,210,

%U 210,225,240,240,256,272,272,289

%N a(n) = floor(n/3)*ceiling(n/3).

%H Vincenzo Librandi, <a href="/A008130/b008130.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2,0,-1,1)

%F From _R. J. Mathar_, Jan 27 2011: (Start)

%F a(n) = A002264(n)*A002264(n+2).

%F G.f. -x^3*(1+x) / ( (1+x+x^2)^2*(x-1)^3 ). (End)

%p A008130:=n->ceil(n/3)*floor(n/3); seq(A008130(n), n=0..60); # _Wesley Ivan Hurt_, Feb 01 2014

%t f[n_]:=Ceiling[n/3]*Floor[n/3];Table[f[n],{n,0,5!}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 01 2010 *)

%t CoefficientList[Series[- x^3 (1 + x) / ((1 + x + x^2)^2 (x - 1)^3), {x, 0, 60}], x] (* _Vincenzo Librandi_, Jun 10 2013 *)

%t LinearRecurrence[{1,0,2,-2,0,-1,1},{0,0,0,1,2,2,4},60] (* _Harvey P. Dale_, Dec 31 2016 *)

%o (Magma) [Floor(n/3)*Ceiling(n/3): n in [0..60]]; // _Vincenzo Librandi_, Jun 10 2013

%K nonn,easy

%O 0,5

%A _N. J. A. Sloane_