%I
%S 1,11,21,1211,1231,131221,132231,232221,134211,14131231,14231241,
%T 24132231,14233221,14233221,14233221,14233221,14233221,14233221,
%U 14233221,14233221,14233221,14233221,14233221,14233221,14233221,14233221,14233221,14233221
%N Summarize the previous term! (in decreasing order).
%H Onno M. Cain, Sela T. Enin, <a href="https://arxiv.org/abs/2004.00209">Inventory Loops (i.e. Counting Sequences) have Preperiod 2 max S_1 + 60</a>, arXiv:2004.00209 [math.NT], 2020.
%F From _Seiichi Manyama_, Aug 18 2020: (Start)
%F a(1) = 1 and a(n) = A244112(a(n1)) for n > 1.
%F a(n) = 14233221 for n >= 13. (End)
%e For example, the term after 131221 is obtained by saying "one 3, two 2's, three 1's", which gives 132231, i.e. 132231.
%t Nest[Append[#, FromDigits@ Flatten@ Map[Reverse, Tally@ ReverseSort@ IntegerDigits@ #[[1]] ] ] &, {1}, 24] (* _Michael De Vlieger_, Jul 15 2020 *)
%Y Cf. A005150, A034003, A036058, A244112.
%K nonn,base,easy
%O 1,2
%A _Mira Bernstein_
