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Counting Overlap-Free Binary Words

Julien Cassalgne

L.I.T.P., Institut Blaise Pascal,
4 place Jussieu, F-75252 Paris Cedex 05, France

Abstract. A word on a finite alphabet A is said to be overlap-free if it
contains no factor of the form zuzruz, where z is a letter and v a (possibly
empty) word. In this paper we study the number un of overlap-free binary
words of length n, which is known to be bounded by a polynomial in n.
First, we describe a bijection between the set of overlap-free words and
a rational language. This yields recurrence relations for un, which allow
to compute un in logarithmic time. Then, we prove that the numbers
a=sup{r |n =0O(un) }and g=inf{r |un=0(n") } are distinct,
and we give an upper bound for o and a lower bound for B. Finally, we
compute an asymptotically tight bound to the number of overlap-free
words of length less than n.

1 Introduction

In general, the problem of evaluating the number un of words of length n in
the language U consisting of words on some finite alphabet A with no factors in
a certain set F' is not easy. If F is finite, it amounts to counting words in the
rational language U and there are well-known techniques for this, e.g. computing
the generating function. But if for instance F' is the set of images of a pattern
p by non-erasing morphisms, it is not even known how to decide whether U
is finite or infinite (i.e. whether p is unavoidable or avoidable on A). However,
Brandenburg [2] proved that u, grows exponentially for the pattern p = a?
on a ternary alphabet A (then U is the set of square-free ternary words), and
Goralcik and Vanicek [6] proved the same for any 2-avoidable binary pattern p
on a binary alphabet A (also proved by Brandenburg for p = &2).
Here we shall study the growth of u, in the case where F is the set

F:{xuzuaz]xEAanduEA*}

with 4 = {a, b}; the elements of U are then called overlap-free binary words. Af-
ter recalling what is known about un (end of this section), we describe (Section 2)
a bijection between U and a rational language. From the automaton recognizing
this language we construct (Section 3) explicit recurrence relations verified by
u, (showing that u, can be computed in logarithmic time). In Section 4, we
study the consequences of these relations on the asymptotic behaviour of u,. In
particular we prove that, although uy 1s bounded from below and from above
by polynomial quantities, it 1s not itself equivalent to a polynomial.
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1.1  Overlap-Free Binary Words

We consider words on the alphabet A = {a, b}, i.e. elements of the monoid A*.
The letter ¢ denotes the empty word. We shall use the notation G = b and b = a.

A word w contains an overlap if some factor v appears at two overlapping
positions. It is equivalent to say that w contains a factor of the form zuzuz with
z € Aand ue A*.

A word w is called overlap-free if it contains no overlap.

In the language of patterns an overlap-free word is a word which simultane-
ously avoids the patterns ofafa and ab.

1.2 Previous Results

In 1906, Axel Thue [10, 11] proved that there are infinitely many overlap-free
binary words, (or, equivalently: there are arbitrarily long overlap-free binary
words). To do this, he constructed an infinite overlap-free word, #¥(a), where #
is the morphism:
6: A — A*
av— ab
b— ba

and 6 (a) means the limit of the sequence (6%(a)):
0“(a) = abbabaabbaababbabaababbaabbabaabba . .. .

This infinite word 6“(a) is overlap-free because the morphism 4 is itself
overlap-free, which means that if w is an overlap-free word, then 6(w) is overlap-
free too.

The problem arising naturally is the following: let u, be the number of
overlap-free binary words of length n. Is it possible to find a bound to Up?
An equivalent? Recurrence relations? Here are some results about this problem.

A linear lower bound to uy, is given by the number of factors of length n in

6 (a) (see [3, 5]):

If 2.2F <n < 3.2%, 6“(a) has 4n — 2.2F factors of length n + 1
If 3.2F < n < 4.2F 6“(a) has 2n + 4.2* factors of length n + 1

(this holds for all & > 0).

Restivo and Salemi [9] gave a polynomial upper bound to uy,: u, < Cn” with
C >0 and » = log, 15 ~ 3.906.

Kobayashi [8] improved these bounds:
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"The lower bound is obtained by counting the overlap-free words that are infinitely
extensible on the right.

Carpi [4] proved that a finite automaton can be used to compute Uy, and
gave a way to find upper bounds Cn" with r arbitrarily near of the optimal
value. However he didn’t publish any numerical result.



2 A Bjjection Between the Language of Overlap-Free
Binary Words and a Rational Language

2.1 A Decomposition of Overlap-Free Binary Words

As we shall see later, we need to consider not only overlap-free words, but also
words that contain only one overlap, which covers them entirely. We call them
simple overlaps.

Definition1. A word w € A* is called a simple overlap if it can be written
w = zuzuz with £ € A and u € AT such that zuzu and uzuz are overlap-free.

Moreover, to avoid special cases as much as possible, we shall restrict our-
selves to words of length at least 4. We define three sets U, V and S as follows:

U 1s the set of overlap-free words of length greater than 3 (13 words are
excluded);

V' is the set of simple overlaps of length greater than 3 (only aaa and bbb are
excluded);

S is the finite set containing the elements of U UV of length less than 8. This
set has 76 elements.

Kfoury [7], Kobayashi [8] and Carpi [4] use results similar to the following
lemma:

Lemma 2. A wordw € (UUV)\S can be written w = r10(u)ry with u overlap-
free and r; € {¢,a,b,aa,bb}. This decomposition is unique. O

Using this lemma, they construct overlap-free words by starting with a small
word and alternatively applying 6 and adding letters to the left or to the right
of the current word. We shall use a similar approach, but instead of adding new
letters we shall remove or modify existing letters.

Definition3. Let £ = {6,:,x}, and G be the monoid (E x E)*. The unit of G
1s denoted by 1. We define an action of G on A* in the following way:

Forall g € G, let .9 = €.

Given v = (11,72) € E x E and w € A*, we write the image of w by 8 as
O(w) = z1uzy with u € A* z; € A and 2o € A, and w.y is given by the table:

Yo=6|7v2=t|12=k
=6 u uZTy ULy

71 = Tiu | T1uT; | Tiuxs
Y1 =K iU T1UTy | TiUZo

(recall that @ = band b = a). For instance, if w = aabb and y = (6, ), to compute
w.y we take f(w) = ababbaba, we delete the first letter and invert the last one:
w.y = babbabb.

For all w € A", let w.1 = w.

Finally, for g € G, v € E x E and w € A*, let w.(yg) = (w.7).g.



Lemma 4. A word w € (UUV)\'S can be uniquely written w = v.y with
YEEXE andv € (UUV). Moreover, |v| < |w|.

Proof. Lemma 2 gives a unique decomposition w = r,0(u)ry. We define v =
zyuzy and ¥ = (y1,72) as follows:

rm=¢|rm=a|ri=b|r =aa|r =0bb
T € a
7 K é 6 L .

<o~
S
<

ro=¢|ro=a ro=b|ry=aa | ry=>bb
zy a b
Y2 K 6 6 L L

™
o~
=]

and it is easy to check that w = v.y and 3 < || < |w| (in fact ]%l <|v| < ]i;—L—H).

The word u is overlap-free. If z;uzy were not in U U V', z1u would begin with
an overlap, or uzz would end with one. Suppose that z;u begins with an overlap:
then Z10(u) begins with an overlap too; this is only possible if w = T160(u) €V,
and then z, = ¢, hence zyuzs = z,u € V. The other case is symmetric. Note
that v can be in V even if w is in U, for instance aabbaabb = babab.(6,6). That’s
why we have to consider U UV instead of simply U.

The unicity of (v,7) is a consequence of the unicity of (u,ry, r9). a

Let Z be the subset of S x G containing all elements except those of the
form (s,vg) with |s.y] < 8. To any z = (s,g9) € Z, we associate the word
[2] = 5.9 € A*. Conversely, we can represent certain words by elements of Z:

Theorem 5. Every word w € U UV has a unigue decomposition w = s.g with
(s,9) € Z.

Proof. Let’s prove this theorem by induction on the length of w. If |w| < 8,
w € S and (s,g) = (w, 1) is the only possibility according to the definition of Z.
Now suppose that the theorem has been proved for words of length less than n;
then if w is a word of length n, by Lemma 4 this word can be uniquely written
w =v.ywithy € ExE, and |[v| < n. By the inductive hypothesis, v has a unique
decomposition v = s.¢ hence w also has a unique decomposition w = s.(gy). O

Elements of Z should be viewed as words on the alphabet S U (E x E),
with only their first letter in S. The set Z is clearly a rational language on
this alphabet: the restriction (s,vg) ¢ Z if |s.y| < 8 (needed for the unicity in
Theorem 5) amounts to defining Z as

Z= (S X G) \ (54 X {(6’ 6)1(6>L):(6: H))(L:é)l("’)é)}G)

where Sy = {aaba, aabb, abaa, abab, abba, baab, baba, babb, bbaa, bbab} is the set of
the elements of length 4 in S.



2.2 The Rational Languages Representing U and V

Let L={z2€Z |[z]€U }and M ={2€ Z |[z] € V }. We shall prove that L
and M are rational languages. To do this we have to answer the question: under
which conditions (on z) is the word [2] an element of U or of V?

First, let’s see what can be said about [z7] = [¢].y when the status of [2] is
known, and ¥ = (y1,72) € E x E.

— If [2] is not in U UV, then [2v] cannot be in U/ UV either.

—If[z]€ U, 11 € {6,x} and v, € {6, }, then [z7] € U.

— If [2] € V, then [2(¢, k)], [2(k, )] and [2(, )] are not in U UV, [2(8, k)] and
[2(k, 6)] are in V, and [2(é,6)] is in U.

— If [2] does not begin with aaba or bbab, then [2(¢,7,)] ¢ U U V.

— If [2] does not end with abaa or babb, then [z(y,,.)] ¢ U U V.

— If [2] begins with aaba and either v3 € {6, %} and [z] € U, or 7, = § and [z] €
V, then [z(¢,72)] € U: it begins with bbabbaa, and if there were an overlap,
bbabba would appear somewhere else in this word, which is impossible. This
result holds also if [z] begins with bbab.

— If [2] ends with abaa or babb and either v; € {6,x} and [z2] € U, or v; = 6
and [z] € V, then by a similar argument [2(7,,¢)] € U.

— If [2] begins with aaba or bbab, ends with abaa or babb, and is in U UV, then
[2(¢,)] € U.

We can see that we need to know a small prefix (at most four letters) and a
small suffix of 2] to conclude.

Definition 6. We define the {ype of a word w € UUV as the couple (4,7) where

t = 11f w begins with aba or bab j=11f w ends with abaor bab
1 = 2 1f w begins with abb or baa J J = 21if w ends with bba or aab
t = 3 if w begins with aaba or bbab an J = 3if w ends with abaa or babb
i = 4 1f w begins with aabb or bbaa J =4 1if w ends with bbaa or aabb

(as w contains neither aaa nor bbb, this is always defined). We call i the prefiz
type and j the suffiz type of w.

Knowing the type (%, j) of [2], one can compute the type (¢, j') of [2(71,72)]
(when this word is in U U V) using the formula

(7", 3") = (e, ), (4, 72))
where ¢ is the function defined by the following table:

112134
61413111
L 3
kl2]211]1

where an empty box means that [z(7;,v2)] cannot be in U U V.



Note that ¢ is nothing else than the transition function of a 4-state automaton
that computes the prefix type or the suffix type of [2]. Taking the direct product
of this automaton by itself, we get a 16-state automaton computing the type of
[2]: as far as type is concerned, there is no interaction between the beginning
and the end of [z].

If now we take two copies of this automaton (one for L and one for M), and
we place arrows between these two copies according to the rules given at the
beginning of the present section, we get an automaton that recognizes L or M
depending on what final states we choose. This automaton as 32 states, plus a
few states to initialize the process, minus a few states that can be suppressed
because they are not reached.

3 Using Matrices to Compute u,

We consider two sequences of 4 by 4 matrices, U,, and V,,:

Un(3,7) is the number of words in U of length n and of type (3, 5),
Va(4,7) is the number of words in V' of length n and of type (i, j).

Let 6, ¢, & be the matrices associated with the transformations é, ¢, , so
that for example (kU,*t) (7, 7) is the number of words u.(x, ) of type (i, ) for
any v € U of length n:

0011 0000 0011
s [0000 ,_ 0000 _|11o0
=lo1o00| “=loo10| *T|o0000

1000 0000 0000

Taking into account the conditions given in Section 2, we can establish the

Theorem 7. The matrices U, and V, defined above verify the following recur-
rence formulas:

Van = 0
V2n+1 = K,Vn+1t6 + §Vn+1tﬂ
U = Volt + 6Vop1'6 + (k + QUM K+ )+ §Upgq %6
Usng1 = tVog1'6 + 6Vagite + (k4 )Unp1'6 + 8Uny1t(k +1¢)
for any integer n greater than 3. a

Given the first few values:

2000 0020
0000 0200

Va =0, s=10000] =0 Vi=19000]"
0000 0000
2020 0220 9902 4202
0200 2002 (2220 (2022
Us= {9000 Y=|2020| Us=]0220] U"=]0202
0002 0200 2002 29920

it is therefore possible to compute U, and V,, in logarithmic time, and hence u,,:



Theorem 8. The number u, of overlap-free binary words can be computed with
the recurrence formulas of Theorem 7 and the relation

un =y Un(4, )
i

which holds forn >3 (ug =1, u3 =2, up =4, u3 = 6).
The sequence u, is therefore a 2-regular sequence in the sense of [1]. a

Remark. The recurrence for V;, can be solved:

0000
0002
0000
0200

Vs, Vi as above, Vo = , Vig =

k—3
V2k+1 = 3

2
0
1
1
Vagr-1yy = 2878
110

Summing the coefficients we get the value of the number of simple overlaps,
vy = ) Va(i,j) for n > 3: the only nonzero values are vyry; = 2F~! and
)
v3 gx41 = 3.2% for k > 1. Hence vy, < n.

— =N O

HNO OO =
—OoON OO k=

01 2 —
)+z§12* 1 0 -1-
3 2 -1 0
0
1
1
0

1
(1) for k > 3; V,, = 0 otherwise.
0

4 Asymptotic Study of u.,

4.1 Simpler Recurrence Relations

It is easier to deal with vector sequences than matrix sequences: taking into
account the fact that U, and V}, are symmetric, and eliminating the components
of Vi, which are always zero, we can code both matrices by a 15-dimensional
vector:

Xn = (Un(1,1),Un(1,2), Un(1,3), Un(1,4), Un(2,2), Un(2,3), Un(2,4),
Un(3,3),Un(3,4),Un(4,4), Va(1,2), Va(1,3), Va(1,4), Va(2, 3), Va(2,4)) .

The recurrence relations become, for n > 6:

Xop = AXp + BXn+1
X2n.+l = CXn+1



where A, B and C are 15 by 15 matrices:

SO T ODDDODDODOODODDOOCOO
SO ODODODDDOOoOoDOCOO
OO OO oo ODOoOOO
OO OO COOC OO OO0
SO OO ooCoCcoocTocoOo o
O OO OO OO OoOOD
NOD T O ODODDOODDODOODTCTOOOO
HO YOO O —TOOOODOODOoOOO
[l Ben e J e B Jan e N e oo N an N o N oo N o N e
(el o R ee Nl R o R o X N Ne No o N
OO OO T OO OOODDOODOoDOD
O~ O CO OO OO
O~ O OO ODDDODOCOoOOOOoOOCOO
SO OOCONODODODODoOCDODoODOoOOO
S OO~ OOODODODOODOD OO OoOO

1
<

SO ~TO O ODOODODDDOOoDOoOooOO
SO OO oo oocooo o
COO—TO OO OCODDODOoCODODOoOO
S OO IO OO ODDODODOODOoOO
OO OO OATODDODDODOOO
HO O OO ODODODODOoODOoODooDOoOOoOD
NOODODOODODOoOoOoDocooOoOO
HFO O OO O OoOOoOooOoooCoCoO
CO 1O O OO oo Ooo
SO OO oo OoCOoOoOoOoo
SO OO OCOOTO0OOODOCDOOOO
S OO —TOD D ODODODODODODOoODOoOO
OO OCDOOoDoOoDOoOoOoOoOO
SO OO —~OoO o oo OO
OO OO0 —TODOoOODODO O

H
Aq]

COOC O OO OO =000
C OO O OO NODO =000
SO ODOODODOODO 1O~ OO
OO OO OO OO O —0O O
SO O OO OO O OO =
NOD O ODODOOODODCOoOOoOoooOoO O
T OO O OO oD OO oo
NO 1T OO CODODODDDOODOOOo
O OO0 OO OO DO 0o
ST O OO ONODODOoOD oo OoOOo
SO OO~ OO OO OO O
OSOSH O 1O OO DD oOoo oo
OO 1O OO OO O
OO O T O0OO0CODOOoOO
OO OO DD OO O

It
&)



We can also write Y,, = (i::;), F = (ig) and G = <§g> Then

Yon = F'Y, and Ya,y1 = GY;, for n > 6.

Remark. These recurrence relations may seem much simpler than those given
in Theorem 7; however the complexity of the problem is hidden in the huge
matrices F' and G.

4.2 The Exponents o and
As the growth of u, is polynomial, it is natural to study the numbers
a=sup{r |3C >0,Yn,u, > Cn" }

and
B=inf{r [|3C > 0,Yn,u, < Cn" } .

Theorem 9. o < 3.

Note 10. We say that a sequence f, grows as another sequence g, if there are
two positive constants Cy and Cy such that Cig, < f, < Cagy, for n large
enough (i.e. f, = O(g,)).

Proof. First consider the subsequence Y7o« = F*Y;. The matrix F has one
simple eigenvalue of maximal modulus p(F'), (the spectral radius of F, which is
approximately 2.421), and it is easy to check that Y7 is not in the sum of the
characteristic spaces corresponding to the other eigenvalues. Hence at least one
element of Y7 ox grows as p(F)*. As Up ok + Uz okyr + Uy okpo + Uz okyn IS @
combination with positive coefficients of these elements, it also grows as p(F)¥,
therefore either uy x ) or uy ox 5 grows as p(F)* (we have seen that v, has a
linear upper bound). We have found a subsequence of u, growing as n” with
r = log, p(F') =~ 1.275, therefore o < 1.276.

Then consider the subsequence Y,, x_, = (GF)FY7. It grows, by similar

3

arguments, as p(GF)* with p(GF) ~ 6.340. Hence there is a subsequence of u,
growing as n” with r = log, p(GF) ~ 1.3322, therefore § > 1.332. o

Remark. These results, together with Kobayashi’s, yield the following bounds:
1155 < < 1.276 < 1.332 < B < 1.587 .

4.3 Partial Sums
Let
n—1
Sp = Z U
k=0
be the number of overlap-free words of length less than n. We can precisely
describe the asymptotic behaviour of this sequence:



Theorem 11. The sequence s, grows as n”, with r = log, ¢ =~ 2.310, where

C:p(F-FG):g-i-\/g-f-\/g—i-\/g

is the largest root of the polynomial X* — 6 X3 +5X2 + 4.

n—1
Proof. Let S, = > Y, for n > 6. Then
k=7

13 n—1 n—1
Sy, = ZYk +ZY2);+ ZYEIH-I = Sl4+(F+G)S” :
k=7 k=7 k=T

One can check that F'+ G — 1 is a regular matrix, so let ' = (F + G ~ 1)_1514:
then Son + T = (F+ G)(Sp+T), and S; 9« = (F + G)*T — T, therefore at least
one element of S; ox grows as (¥. As before, we deduce that s, 5« also grows as

¢k
If 728 < n < 7.25%! then s7ox < s, < S7ox41, SO 5, grows as (%827
ie. nlo82¢, O
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