login
Numbers that are divisible by exactly 2 different primes; numbers n with omega(n) = A001221(n) = 2.
66

%I #69 Apr 14 2024 03:49:31

%S 6,10,12,14,15,18,20,21,22,24,26,28,33,34,35,36,38,39,40,44,45,46,48,

%T 50,51,52,54,55,56,57,58,62,63,65,68,69,72,74,75,76,77,80,82,85,86,87,

%U 88,91,92,93,94,95,96,98,99,100,104,106,108,111,112,115,116,117,118

%N Numbers that are divisible by exactly 2 different primes; numbers n with omega(n) = A001221(n) = 2.

%C Every group of order p^a * q^b is solvable (Burnside, 1904). - _Franz Vrabec_, Sep 14 2008

%C Characteristic function for a(n): floor(omega(n)/2) * floor(2/omega(n)) where omega(n) is the number of distinct prime factors of n. - _Wesley Ivan Hurt_, Jan 10 2013

%H T. D. Noe, <a href="/A007774/b007774.txt">Table of n, a(n) for n = 1..1000</a>

%H W. Burnside, <a href="https://doi.org/10.1112/plms/s2-1.1.388">On groups of order p^alpha q^beta</a>, Proc. London Math. Soc. (2) 1 (1904), 388-392.

%H Hans Montanus and Ron Westdijk, <a href="https://greenbluemath.nl/wp-content/uploads/2024/03/Cellular-Automation-and-Binomials.pdf">Cellular Automation and Binomials</a>, Green Blue Mathematics (2022), p. 90.

%e 20 is a term because 20 = 2^2*5 with two distinct prime divisors 2, 5.

%p with(numtheory,factorset):f := proc(n) if nops(factorset(n))=2 then RETURN(n) fi; end;

%t Select[Range[0,6! ],Length[FactorInteger[ # ]]==2&] (* _Vladimir Joseph Stephan Orlovsky_, Apr 22 2010 *)

%t Select[Range[120],PrimeNu[#]==2&] (* _Harvey P. Dale_, Jun 03 2020 *)

%o (Haskell)

%o a007774 n = a007774_list !! (n-1)

%o a007774_list = filter ((== 2) . a001221) [1..]

%o -- _Reinhard Zumkeller_, Aug 02 2012

%o (PARI) is(n)=omega(n)==2 \\ _Charles R Greathouse IV_, Apr 01 2013

%o (Python)

%o from sympy import primefactors

%o A007774_list = [n for n in range(1,10**5) if len(primefactors(n)) == 2] # _Chai Wah Wu_, Aug 23 2021

%Y Subsequence of A085736; A256617 is a subsequence.

%Y Row 2 of A125666.

%Y Cf. A001358 (products of two primes), A014612 (products of three primes), A014613 (products of four primes), A014614 (products of five primes), where the primes are not necessarily distinct.

%Y Cf. A006881, A046386, A046387, A067885 (product of exactly 2, 4, 5, 6 distinct primes respectively).

%Y Cf. A000040, A112801.

%K nonn

%O 1,1

%A Luke Pebody (ltp1000(AT)hermes.cam.ac.uk)

%E Expanded definition. - _N. J. A. Sloane_, Aug 22 2021