%I #34 Jun 29 2019 19:52:00
%S 30,15015,33426748355,1357656019974967471687377449,
%T 7105630242567996762185122555313528897845637444413640621
%N a(n) = prime(n)*...*prime(m), the least product of consecutive primes which is abundant.
%C Essentially, i.e., except for a(1), identical to A007702. All terms are primitive abundant numbers (A091191) and thus, except for the first term, odd primitive abundant (A006038). The next term is too large to be displayed here, see A007707 (and formula) for many more terms, using a more compact encoding. - _M. F. Hasler_, Apr 30 2017
%H Amiram Eldar, <a href="/A007741/b007741.txt">Table of n, a(n) for n = 1..14</a>
%H G. Thimm, <a href="/A007741/a007741.pdf">Emails to N. J. A. Sloane, Sep. 1994</a>
%F a(n) = Product_{k=n..A007707(n)} prime(k) = Product_{0 <= i < A108227(n)} prime(n+i). - _M. F. Hasler_, Apr 30 2017 and Jun 15 2017
%t a[n_] := Module[{p = Prime[n]}, r = 1; prod = 1; While[r <= 2, r *= 1 + 1/p; prod *= p; p = NextPrime[p]]; prod]; Array[a, 5] (* _Amiram Eldar_, Jun 29 2019 *)
%o (PARI) a(n) = {p = prime(n); sig = p+1; prd = p; while (sig <= 2*prd, p = nextprime(p+1); sig *= p+1; prd *= p;); return (prd);} \\ _Michel Marcus_, Mar 10 2013
%Y Cf. A005101, A006038, A007702, A007707, A007708, A091191.
%Y Cf. A108227, A285993.
%K nonn
%O 1,1
%A _Walter Nissen_
%E More terms from _Don Reble_, Nov 10 2005