Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0536 #41 Jun 10 2020 17:41:34
%S 1,1,2,3,4,6,6,11,10,18,16,20,24,26,20,45,40,38,34,62,46,54,50,84,50,
%T 102,78,104,98,90,70,189,82,130,84,120,112,130,120,232,152,234,132,
%U 130,208,282,140,462,180,210,220,418,284,334,260,520,156,334,556
%N Shifts left under GCD-convolution with itself.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A007464/b007464.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%p a:= proc(n) option remember;
%p `if`(n=0, 1, add(igcd(a(i), a(n-1-i)), i=0..n-1))
%p end:
%p seq(a(n), n=0..80); # _Alois P. Heinz_, Jun 22 2012
%t a[0]=1; a[1]=1; a[n_] := a[n] = Sum[GCD[a[k], a[n-k-1]], {k, 0, n-1}]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Sep 07 2012, after _Alois P. Heinz_ *)
%o (PARI) N=66; v=vector(N); v[1]=1; for(n=2,N, v[n]=sum(k=1,n-1, gcd(v[k],v[n-k])) ); v \\ _Joerg Arndt_, Jun 30 2013
%o (Haskell)
%o a007464 n = a007464_list !! n
%o a007464_list = 1 : 1 : f [1,1] where
%o f xs = y : f (y:xs) where y = sum $ zipWith gcd xs $ reverse xs
%o -- _Reinhard Zumkeller_, Jan 21 2014
%o (Python)
%o from fractions import gcd
%o A007464_list = [1, 1]
%o for n in range(1,10**3):
%o A007464_list.append(sum(gcd(A007464_list[i],A007464_list[n-i]) for i in range(n+1)))
%o # _Chai Wah Wu_, Dec 26 2014
%Y Cf. A178063 (partial sums).
%K nonn,nice,eigen
%O 0,3
%A _N. J. A. Sloane_