

A1 4
A 7SO

UGA-CS-TR-91-009

Exponents of 2 in the Numbers of Unlabeled
Graphs and Tournaments

Steven C. Cater
Robert W. Robinson

Department of Computer Science
The University of Georgia

(jCcL @\0‘1 Q

Exponents of 2 in the Numbers of Unlabeled
Graphs and Tournaments

Steven C. Cater and Robert W. Robinson*
Computer Science Department
415 GSRC
University of Georgia
Athens, GA 30602

May 8, 1991

Abstract

Let g(n) denote the number of unlabeled graphs on n nodes, and let e(n)
denote its 2-part, i.e., the exponent of the largest power of 2 which divides g(n).
It is shown that

e(n) = (n+1)/2 - |log, n]
for odd n > 5, and
e(n) > n/2 — |log, n]

for even n > 4 with equality if, and only if, n is a power of 2.
Similarly, let ¢(n) denote the number of unlabeled tournaments on n nodes
and 7(n) its 2-part. It is shown that

r(n)=(n-1)/2

for all odd n, and
r(n) > n/2

for all even n > 4 with equality if, and only if, ¢(n)/2 is odd.

1 Introduction

Let g(n) be the number of nonisomorphic graphs on n nodes, often refered to as
unlabeled graphs. The first known publication of a formula for g(n) was by Redfield
[11], but his contributions went unrecognized until well after the result had been

* A preliminary version of this paper (without the tournament results) was presented at the 22nd
Southeastern International Conference on Combinatorics, Graph Theory, and Computing in Baton
Rouge, LA, on February 11, 1991. The current version has been submitted for inclusion in the

conference proceedings.

independently rediscovered several times and had become widely known. Pdlya’s
classic paper [9] was the basis for much of the later work in graphical enumeration; it
has finally become available in translation [10], accompanied by a survey of the many
different kinds of research that stemmed from it over a period of 50 years. Pdlya did
not publish a formula for g(n) since he was more interested in trees, but he included
it in some of his lectures, and much later sent it to Frank Harary in a note. His
ideas were developed and expounded in Harary’s influential paper [4]. This appeared
just two years after Davis [1] published his own independent discovery of a formula
for g(n). The subject of graphical enumeration is thoroughly treated in the book of
Harary and Palmer [5], where g(n) is discussed in Section 4.1.

In spite of the attention accorded to g(n) over the years, including asymptotic
analysis and refinement by number of edges and other properties, it seems to have
gone unnoticed that g(n) has many factors of 2. In the present paper we show the
data which led to this realization, and we prove that asymptotically there are approx-
imately n/2 factors of 2 in g(n). For odd n the number is determined exactly, while
for even n only a lower bound is proved. The proofs are of an algebraic nature, and
appear to shed no light on possible combinatorial explanations of this phenomenon.

When the question of unlabeled tournaments was raised,’ it was natural and
straightforward to perform a similar analysis on the numbers ¢(n). The results gener-
ally parallel those for graphs, but there are slightly more factors of 2 as a function of
n, and some interesting features of the numbers for even n. Tournaments were first
counted by Davis [2], though the method is only a slight variation on that needed for
counting graphs. The result is explained in Moon’s book [8], in Section 29. It is also
presented in Section 5.2 of Harary and Palmer’s book [5].

Formulae for g(n) and ¢(n) require summing over partitions of n. We use ¢ - n
to signify that o is a partition of n. We use two different conventions for specifying
a partition. The more often needed form is

g = [31752""751]

where sy, 2, - -, are the partsof o. These parts are positive integers which sum to
n if ¢ n; their order is immaterial and repetitions are allowed. The other form is

0 =< 01,02, ,0, >

where o; denotes the number of parts which are equal to z. Thus the o,’s are nonneg-
ative integers, their order does matter, and n = o, + 202 + -+ + no, ok n.
The contribution of a partition o of n to g(n) or t(n) is denoted by A(c). This is
given by
A(o) = 289 /(o)

where

A(o):i {{%J + Zl: (Sf,sj-)}

=1 1=1+1

IThe authors would like to thank the member of the audience (whose identity they do not know)
at the conference presentation of this paper who asked about tournaments.

and

Qo) =[] ailti.
i=1

Here we have used both representations of o, and (s;, s;) denotes the greatest common
divisor.

In our analysis in Sections 3 and 4 the number of odd parts of & will be denoted by
k. Tt is then easy to see that the first summand in the definition of A(o) contributes
(n — k)/2, so that

Alo)=m—=k)/2 + > (si,s;).
1<ig <

Also, the 2-part will be denoted v,. We frequently need the 2-part of A(c), which
can be written as

l n

va(A(0)) = A(o) = 3 walsi) = 3 valail)

i=1 =1

directly from the definition of A. In providing lower bounds for this expression it is
often helpful to recall that

va(p!) = [p/2] + [p/4] + [p/8] + -+,
s0 vy(p!) < p—1forallp > 1. Forodd p > 3 wethen have vy(p!) = vo((p—1)!) < p—2.
We can now express the formula for g(n) quite succinctly:

g(n) =3_ A(o).

okn

For #(n) the sum is restricted to partitions into odd parts, which we will call odd

partitions. Thus
tn)= Y. Ao).
okn

codd

For simplicity in expressing the results we introduce the notation e(n) = vo(g(n)) and

r(n) = vo(t(n)).

2 Computational Methods and Results

This work began as an attempt to investigate possible speedups for graphical enumer-
ation algorithms when implementated on paralle] architectures, especially hypercube
architectures. In order to facilitate use of these algorithms by mathematicians, 1t was
decided to use a language in which operations on large integers (larger than the word
size of the machine) look the same as operations on standard integers. C++ [12] was
chosen, primarily for that reason. It has the following additional advantages.

o C++ is an object oriented language, which means that any mathematical object
(not just integers) needed can be implemented and used in a manner quite
similar to the way a mathematician normally would. An example, written by
us, is the Partition class, the C++ equivalent of the set of all partitions of the
integer n, where n is a relatively small integer (n < 10°, say). This class will
be discussed below.

o C++ supports operator overloading, that is, the standard operators in the lan-
guage can be given new meanings. For example, if one wishes to define a class
Rational, which would represent rational numbers, one can easily redefine the
plus symbol to represent infix addition of elements of type Rational. Simi-
larly, the input and output operators can be redefined to allow reading and
writing Rational values in exactly the same manner as real numbers are read
and written.

e C++ can be easily and mechanically translated to C [6]. Since our first target
machine, the Intel iPSC2, has only C, FORTRAN, and Lisp compilers, this was

an important consideration.

o C-++ isrelatively easy for a non-computer scientist to read, as opposed to Lisp,
another language having large integer capabilities.

o C++ is a modern langauge, having strong typing and sophisticated compile
time type checking. This feature makes debugging and testing much easier.

As an example of the object oriented and operator overloading features of C++,
consider the code given in Figure 1. This code declares the class Partition. Although
it is a bit cryptic, it need never be seen by the user. This code states that the class
Partition is being declared, that the type Partition can be used as if it were a
type built into C++4, and that objects of type Partition can be manipulated only
by using the functions GetSize (to find the number which is being partitioned),
next (to return the next partition after the current one, in lexicographic order), and
more (to determine if there is another partition after the current one). In addition,
the output operator << is redefined to include output of a partition, and the array
indexing operator [] is redefined to allow looking at (but not changing) the numbers
of parts of each value in the current partition. A separate file containing some 40
lines of code is needed in order to complete the implementation of these declarations.

An example of the use of the Partition class is given in Figure 2. This complete
program prompts the user to enter a partition size, creates a variable named part to
be a partition of that size, lists all the partitions of that size, and repeats, stopping
when a partition size of zero has been given.

Once the programming language had been decided, the next step was to choose
the compiler. This was easy, since the GNU? C+4+ compiler [13], g++, was available
and cost nothing. In addition, an (almost) arbitrary length Integer class already

2GNU is a project of the Free Software Foundation, 675 Massachusetts Ave., Cambridge, MA
02139. GNU software is also available at prep.ai.mit.edu via anonymous ftp.

/* defs for Partition class */
#include <bool.h>

class Partition {

friend ostream& operator<<(ostream&, Partition&);

public:
Partition(int);
int GetSize()
void next();
bool more() { return 'finished;}

{ return size; }

initialize function
return partition size
return next partition
any more partitions?

//
//
//
//

int operator[](int i) {return pplil;}

private:
bool finished;
int size;
int *pp;

Y

Figure 1: Declaration of the class Partition.

#tinclude <stream.h>
#include "Partition.h"

main() {

int size;

for(;;) 1

cout << "Enter partition size:

cin >> size;

if (size

Partition part =

while(part.more()) {
cout << part;
part.next();

¥

0) exit(0);

n.
3

Partition(size);

Figure 2: A C++ program which uses the Partition class.

exists for g++. Although g++ no longer supports translation to C, it was decided
that the code would first be written in GNU C++, tested and debugged, and then
modified for use with another C+4 compiler which does support such translation.

The first step was to write sequential versions of a few of the target algorithms
in C++ on a Sun 4 workstation. The first algorithm implementated was the formula
for counting numbers of unlabeled graphs, given above. Using the GNU-provided
arbitrary length Integer class and our Partition class, the code proved easy to
write. It is given in Figure 3; note the similarity to the formula. This code was tested
by enclosing it in a loop to generate counts for one through twenty.

It was anticipated that the results of this computation would provide an easy check
on the soundness of the code. However, after hours of debugging, we determined that
our code was probably correct, but the Integer class definitely had a bug in it.
We submitted a bug report to Doug Lea®, who wrote and who maintains the g++
Integer class [7]. Less than twenty-four hours later, he informed us that we had
indeed found a new bug in his code, and supplied us with a corrected version. This
level of support for a free product is nothing short of amazing.

Our code proved to be correct once the patched Integer class was added, and we
found that we could calculate the number of unlabeled graphs of size n, for n equal
one to twenty, very rapidly. As an experiment, we decided to see how far sequential
calculation could take us. The results are given in Tables 1 and 2, to 21 significant
digits?. We quit computing when the time to calculate each new value became too
long; at n = 89, the calculation took approximately two days. Examination of this
table led to the observation that the 2-part seemed to grow linearly in n. These 2-
parts were then computed explicitly; the results are shown in column two of Table 3.
At this point the authors’ attention focused on the work described in Section 3. After
the question of tournaments was raised, the programs used to generate the above
data were modified to count tournaments and to calculate the 2-part of tournament
numbers. The numbers of unlabeled tournaments are given in Tables 4 and 5; the
2-parts of these numbers are given in the third column of Table 3.

3 TUnlabeled graph numbers
Theorem 1 For oddn > 5, e(n) = (n+1)/2 — [log,n].
Proof. It suffices to show that for odd n > 5 and o - n,

03(A(0)) > (n+1)/2 — logy n]

with equality if and only if ¢ = [2*,n — 2¥], where u = [log,n]. The equality is
quickly verified in the latter case, so take some other partition o of n.

3Doug Lea’s Internet address is d1@g.oswego. edu.
4The full integer values for all of the results are available from the authors al

cater@pollux.cs.uga.edu, or rwr at the same machine.

6

/* Test of Partitions class and lambda def. Calculates number of
unlabeled graphs of size n. */

#include <stream.h>
#include <Integer.h>
#include <std.h>
#include "Partition.h"

int lambda(Partition);
Integer factorial(int);

main() {
Integer nfact, sum, prod, temp;
int n;

cin >> n;
sum = 0;
cout << "Counting unlabeled graphs with " << n << " nodes.\n";
nfact = factorial(n);
for(Partition sigma(n); sigma.more(); sigma.next()) {

prod = 1;

for(int i = 1; i <= n; i++) {

prod *= factorial(sigmal[i]) * Ipow(i,sigmalil);
}
sum += Ipow(2, lambda(sigma)) * (nfact / prod);

}
temp = sum / nfact;
cout << "Number of graphs = " << temp << "\n"

<< “"Check = " << (temp * nfact == sum) << "\n\n" ;

inline Integer factorial(int n) {
Integer prod = 1;
for(int i = 1; 1 <= n; i++) {
prod *= ij;
}

return prod;

}

Figure 3: C++ code to count unlabeled graphs.

n g(n) n 9(n)

1 1.E 01| 26| 1.69487618400693135671 E 71
2 2.E 0| 27| 4.21260006519643885757 E 77
3 4. E 01 28 2.01929599967857139573 E 84
4 1.1 E 1] 291.86913527224789560417 E 91
) 34FE 11| 301 3.34494316309257669249 & 98
6 1.56 E 2| 31| 1.15858150442058126734 E 106
7 1.044 E 3| 32| 7.77510571865055903406 E 113
8 1.2346 E 4 || 33 | 1.01193386573463039354 E 122
9 2.74668 E 5 | 34 | 2.55660138713977238511 E 130
10 1.2005168 E 7 || 35| 1.25491641977244993328 E 139
11 1.018997864 E 9 || 36 | 1.19773884587727998740 E 148
12 1.65091172592 E 11 || 37 | 2.22454014411225378689 E 157
13 5.0502031367952 E 13 || 38 | 8.04574912012549013374 E 166
14 2.9054155657235488 E 16 || 39 | 5.67076581342507135706 E 176
15| 3.1426485969804308768 E 19 || 40 | 7.79384116791497795458 E 186
16 | 6.40010157045275578949 E 22 || 41 | 2.09010218966510082133 E 197
17 | 2.45935864153532932684 E 26 || 42 | 1.09432936149936537059 E 208
18 | 1.78757772514561170055 E 30 || 43 | 1.11928172756940473343 E 219
19 | 2.46378092531250045244 E 34 || 44 | 2.23756958905295273248 L 230
20 | 6.45490122795799841856 E 38 || 45 | 8.74749788753564969915 E 241
21 | 3.22202728998089834335 E 43 || 46 | 6.69076566314768312199 I 253
22 | 3.07084648309414430064 E 48 | 47 | 1.00174633465851788106 E 266
23 | 5.59946939699792080598 E 53 | 48 | 2.93715131472758447010 E 278
24 | 1.95704906302078447922 E 59 || 49 | 1.68721346510668416967 E 291
25 | 1.31331393569895519432 E 65 | 50 | 1.89963348317963058713 E 304

Table 1: Number of unlabeled graphs of order n, 1 <n < 50.

n g(n) n g(n)
51 | 4.19371992498551232276 E 317 || 71 | 1.34857728595610051484 I 646
52 | 1.81604187417696589248 E 331 || 72 | 4.42255289913777928034 E 665
53 | 1.54315575619395726431 E 345 || 73 | 2.86094733967208596061 E 685
54 | 2.57398358835840638107 E 359 || 74 | 3.65147076381690182830 E 705
55 | 8.43068474864503196796 E 373 || 75 | 9.19657767905459181171 E 725
56 | 5.42406124178183939045 E 388 || 76 | 4.57153791459731763943 E 746
57 | 6.85692636837120997184 E 403 || 77 | 4.48591738661032050132 E 767
58 | 1.70377109172429517616 E 419 || 78 | 8.69093165597980295968 E 788
59 | 8.32336580752713111241 E 434 || 79 | 3.32490242893041445931 E 810
60 | 7.99682285850609074380 E 450 | 80 | 2.51222524627085789379 E 832
61 | 1.51142771182020356617 E 467 | 81 | 3.74949872210439568501 E 854
62 | 5.62115326327816237337 E 483 | 82 | 1.10557702823513689320 E 877
63 | 4.11476093836466136684 E 500 | 83 | 6.44125597593382597410 E 899
64 | 5.92999546519608121461 E 517 | 84 | 7.41619110481278923819 E 922
65 | 1.68290936468815851758 E 535 | 85 | 1.68764704184555736276 E 946
66 | 9.40733283322775493811 E 552 | 86 | 7.59159100756593419464 E 969
67 | 1.03602782800452157790 E 571 | 87 | 6.75138970556373002920 E 993
68 | 2.24839296428712782337 E 589 | 88 | 1.18718972121256760220 E 1018
69 | 9.61751410767161184605 E 607 | 89 | 4.12828564639630784761 E 1042
70 | 8.11025469117756850102 E 626 | 90 | 2.83920560848950935498 E 1067
91 | 3.86238055221184090004 I 1092

Table 2: Number of unlabeled graphs of order n, 51 <n < 91.

C

AWS

M!L\(CC @ e fFues

Auq ATISO

n | e(n)| r(n n | e(n) | r(n) n | e(n)| r(n)
1 fo 0 34| 16 | 20 67 | 28 | 33
2 111 0 35| 13 | 17 68| 32 | 38
3 2 1 36| 16 | 19 69| 29 | 34
40 2 37| 14 | 18 70| 30 | 37
5| 1 2 38| 15 | 19 71| 30 | 35
6 |1 2 3 39 15 | 19 72| 35 | 38
7112 3 40| 17 | 26 73| 31 | 36
8 |11 5 411 16 | 20 74 32 | 38
9 |l 2 4 42| 17 | 22 75| 32 | 37
10| 4 6 431 17 | 21 76| 34 | 39
1] 3 5 44| 19 | 23 771 33 | 38
2l 4 7 | |45 18 | 22 78| 34 | 41
13 4 6 461 19 | 23 79| 34 | 39
141 5 7 47| 19 | 23 80| 36 | 45
151 5 I 7 481 20 | 30 81| 35 | 40
16 || 4 10 49| 20 | 24 s2 1 36 | 43
170 5 8 50 21 | 26 83| 36 | 41
18] 8 9 511 21 | 25 841 38 | 44
19 |1 6 9 52| 23 | 28 85| 37 | 42
2 | 8 12 531 22 | 26 86| 38 | 43
21 |1 7 10 54 | 23 | 21 87| 38 | 43
22 | 8 11 55| 23 | 27 88| 41 | 46
23| 8 11 56| 25 | 30 89| 39 | 44
24 [1 9 14 57| 24 | 28 90 | 40 | 47
25 (1 9 12 581 25 | 30 91| 40 | 45
26 |1 10 | 14 50| 25 | 29 92 | — | 47
271110 (813 60| 27 | 33 93| — | 46
28 |1 15 |} 15 61| 26 | 30 94 | — | 47
29 |1 11 14 62 27 | 31 95| — | 47
30 (012 |§17 631 27 | 31 96| — | 51
31| 12 aw 64 | 26 | 35 97 | — | 48
32 1 11 f119 65| 27 | 32 98 | — | 49
331812 [116 66| 31 | 34 99 | — | 49

[]
i

. i
Table 3: ”Ahe 2-p Flt of unlabeled graph

s
“1\S0
U/DO

& ,Emt ﬂ numbes

Ly §

{

[, 3

el

&,

10

]
s

b

and tournament nu mbers.

ﬂ ﬁ-\ %rlf-'*l ™ cﬁ*” ﬁ

(A}

*‘Loqiwa;ﬂ PM‘S

%R

Cals) .

n a:fﬂ/d

{/

-

n i(n) n t(n)

1 1.E 0] 26| 1.69484335125246268101 E 71
2 1. E 0| 27| 4.21255599848131447082 E 17
3 2.E 0] 28| 2.01928462566720826509 E 84
4 4.E 0 29| 1.86912961822137124078 E 91
d 12 E 1| 30| 3.34493774260141796029 E 98
6 56 E 1| 31| 1.15858050093774074838 E 106
7 456 E 2| 32| 7.77510212704809602577 E 113
8 6.850 E 3 || 33 | 1.01193361693125457991 E 122
9 1.91536 E 5 || 34 | 2.55660105320160166874 E 130
10 9.733056 E 6 || 35 | 1.25491633284800343840 E 139
11 9.03753248 E 8 || 36 | 1.19773880195520546921 E 148
12 1.54108311168 E 11 || 37 | 2.22454010099365542315 E 157
13 4.8542114686912 E 13 || 38 | 8.04574903781750488782 E 166
14 2.8401423719122304 E 16 || 39 | 5.67076578285122471705 E 176
15 | 3.1021002160355166848 E 19 || 40 | 7.79384114579899128834 E 186
16 | 6.35304158423082651003 E 22 || 41 | 2.09010218654756435461 E 197
17 | 2.44912778438520759443 E 26 || 42 | 1.09432936064242347289 E 208
18 | 1.78339884628477797542 E 30 || 43 | 1.11928172710978640162 E 219
19 | 2.46056411712603767706 E 34 || 44 | 2.23756958857166158964 E 230
20 | 6.45022068557873570932 E 38 || 45 | 8.74749788655111907998 E 241
21 | 3.22073640316611753845 E 43 || 46 | 6.69076566275404571705 E 253
22 1 3.07016988315046833619 E 48 || 47 | 1.00174633462774035901 E 266
23 | 5.59879382429394075398 E 53 || 48 | 2.93715131468050239237 E 278
24 | 1.95692027657521876084 E 59 | 49 | 1.68721346509258584336 £ 291
25 | 1.31326696677895002131 E 65 || 50 | 1.89963348317136324115 E 304

Table 4: Number of unlabeled tournaments of order n, 1 < n < 50.

11

n i(n) n t(n)

51 | 4.19371992497601415534 £ 317 || 76 | 4.57153791459731763874 E 746
52 | 1.81604187417482709531 E 331 || 77 | 4.48591738661032050097 E 767
53 | 1.54315575619301292254 E 345 || 78 | 8.69093165597980295934 E 788
54 | 2.57398358835758850852 E 359 || 79 | 3.32490242893041445925 E 810
55 | 8.43068474864364201683 E 373 {| 80 | 2.51222524627085789377 E 832
56 | 5.42406124178137570279 E 388 || 81 | 3.74949872210439568499 E 854
57 | 6.85692636837090622441 E 403 || 82 | 1.10557702823513689320 E 877
58 | 1.70377109172425609168 E 419 || 83 | 6.44125597593382597409 E 899
59 | 8.32336580752703229368 E 434 || 84 | 7.41619110481278923818 E 922
60 | 7.09682285850604163594 E 450 || 85 | 1.68764704184555736276 E 946
61 | 1.51142771182019876808 E 467 || 86 | 7.59159100756593419464 E 969
62 | 5.62115326327815315366 E 483 || 87 | 6.75138970556373002920 E 993
63 | 4.11476093836465788172 E 500 || S8 | 1.18718972121256760220 E 1018
64 | 5.92999546519607862231 E 517 || 89 | 4.12828564639630784761 E 1042
65 | 1.68290936468815813806 E 535 || 90 | 2.83920560848950935498 E 1067
66 | 9.40733283322775384422 E 552 || 91 | 3.86238055221184090004 E 1092
67 | 1.03602782800452151582 E 571 || 92 | 1.03943381142178588779 E 1118
68 | 2.24839296428712775396 E 589 || 93 | 5.53443756277865881384 £ 1143
69 | 9.61751410767161169316 E 607 || 94 | 5.83089519479889119443 E 1169
70 | 8.11025469117756843466 E 626 || 95 | 1.21571345288728832606 I 1196
71 | 1.34857728595610050916 E 646 || 96 | 5.01660119875685004117 E 1222
792 | 4.49955280913777927077 E 665 || 97 | 4.09748551592124748579 E 1249
73 | 2.86094733967208595743 E 685 | 98 | 6.62522955827046632021 E 1276
74 | 3.65147076381690182621 E 705 | 99 | 2.12082732984630395231 E 1304
751 9.19657767905459180900 E 725

Table 5: Number of unlabeled tournaments of order n, 51 < n < 99.

Case 1. Every part of o is odd.
We claim that vo(A(0)) > (n —1)/2. Since n > 5, [logyn| > 2, so

0a(A(0)) > (n+1)/2 — [log 7]

will follow. To prove the claim, suppose ¢ has k parts. Since n is odd, & is odd. Then

n—k k
Alo) > 5 +(2)

since S5 [si/2] = (n — k)/2 when each s; is odd, Yi_; si = n, and (s;,85) > 1
for all 4, 7. Moreover, if k > 3 then v2(Q(0)) < k — 2. That is because vo(Q2(0)) =
5%, va(oi!) for odd 0. We have Yiby 0y = k, and vy(0!) < 0; — 1 whenever o; > 1.
If there are two different part values in o, this gives vy((0)) < k — 2 at once. If
there is only one part value, then

0a(0)) = va(k!) < k-2,

the latter since k is odd . Thus, if £ > 3 we have

v A(0) 2 ";k+(§)—w—%

r4

n 1 2
> (n—1)/2.

If k = 1 there is only one part, of value n, so ¢ = [n]. Clearly v2(A([n])) = (n —1)/2
since n is odd. So this is the minimum of v2(A(c)) when all parts are odd, and this
minimum is attained only when o = [n].

Case 2. There is exactly one odd part in o, and at least one even part.

Let m denote the number of even parts in o, and let M;,..., My, denote their
9-parts. We may assume that they are listed in non-decreasing order of 2-parts, so
that

1 <M < <M,

The greatest common divisor of the 7th and jth parts when ¢ < 7 1s then a multiple
of 2™ and thus at least 2™ Summing over all pairs of parts gives a contribution of
al least "7, (m —1)2M:. From the denominator, the powers give a 2-part of exactly
—(M;+- -+ M,), while the 2-part of the factorials must contribute at least —(m—1).
Adding in m as a lower bound for the sum of the greatest common divisors of the
m even parts with the one odd part, and noting that the single odd part makes no
contribution whatever to the 2-part of the denominator, we have
n—1

va(A) > 5 +m—-(m—-1)-Y M, + > (m — j)2M
7=1 1=1

1 m—1 . ’
= n; + Z_; (12Mm=r — M,)
> n+1 M.

4

13

-

This is because 2* > a for all a, so the lower bound can only be attained if m =1,
Obviously u = |log,] is an upper bound for M, and only a part of size 2 gives this
value among the positive even numbers less than n. Thus for ¢ in Case 2 we have

v A(0) 2 2~ logy nl,

with equality only if ¢ = [2%,n — 2¢].

Case 3. There are k > 3 odd parts in o, and at least one even part.

We claim that the lower bound of Case 2 must be exceeded in this case. The
greatest common divisors of the km pairs of parts where one is even and the other 1s
odd are all greater than or equal to 1, so their sum is at least km. Combining this
with the analyses given for Cases 1 and 2 yields

ua(B(0)) > n—;k+(§>—(k—2)+nzk— m—1) +TZ] (i2Mn= — M,,_,)
- ’”"(’;”2) 1tk 1)+ Z__: (2% — M)
> njl-km(k—l)‘Mm

as required. O

Theorem 2 For even n > 4,e(n) > n/2 — |log, n| with equality if and only tf n is a
power of 2.

Proof. As in the proof of Theorem 1, let k be the number of odd parts in ¢ and m
the number of even parts. Then consider the three cases m = 0,k = 0, and m > 1
and k > 2.

Case 1. m = 0.

Since n is even, k must be even and k > 2. Our analysis of Case 1 of Theorem 1
applies except that —(k — 1) is our best general lower bound for the contribution of
the 2-part of the factorials in the denominator, instead of —(k — 2), since k Is even
rather than odd. Thus

n—k k
e)
n (k-—2)
= §+ 9 -1
n
> 0

> — |log,], since n > 4.

o] 2 eol

Hence, the lower bound of the theorem cannot be attained in Case 1.

14

Case 2. k =0.
We have m > 1, and can follow the analysis of Case 2 of Theorem 1 with the
straightforward adjustments caused by having k = 0 instead of k£ = 1. This gives us

m—1
u(A0) 2 5= (m=-1)+ 3 (2% = M)
1=0
= M, 4 @Mm oMo 1)+ (2-2Mmr My — 1) 4
2
2 g — [log, n.

To attain equality we must have M,, = |log,n|. We would also need to have con-
tributions of zero from any applicable terms grouped in parentheses. In particular,
m < 2 because if m > 3 we have M,,_, > 1 so 2Mm-2 > 1 and OMm-2 > M, _,, hence
2. 9Mn—2 _ M, _,—1>0 Hm=2 M, = |log,n| from above, and so M; < M,
since 2M1 4 9M2 < < 21*M2 Then the two parts of o must be different, and the
factorials in the denominator are both 1!, thus contributing zero to the 2-part. Our
general lower bound used —(m — 1) = —1 for this contribution, so we can add 1 in
this situation when m = 2, which means again that the lower bound is not attained.

So we can only attain the lower bound when m = 1 and M; = |log,n]. Since
k = 0, this means that o = [n], as there is only one part in o. In this case
va(A([n])) = n/2 ~ va(n), and M; = vy(n). We have equality with the lower bound
if, and only if, vo(n) = [log, n], i.e., if, and only if, n is a power of 2.

Case 3. m>1 and k > 2.
This follows Case 3 of Theorem 1 except for the replacement of —(k — 2) by
—(k — 1) as noted in Case 1 of the present theorem. Thus we find

v2(A0)) > n—k + (k) — (k=1 +km—-(m—-1)+ i (:2Mm= — M. ;)

- 2 2 =1
Y
g (k 22) 4+ (k=1)m — My 4 (2™ — Mpy) + -
> g—[loanJ.

Hence, the lower bound cannot be attained in Case 3. O

4 Unlabeled tournament numbers

Theorem 3 For all odd n, r(n) = (n —1)/2. For all even n > 4, r(n) > n/2 with
equality if, and only if, ¢(n)/2 is odd.

Proof. For odd n the proof of Theorem 1, Case 1, showed that
va(A(0)) = (n—1)/2

with equality if, and only if, o = [n]. Thus, 7(n) = (n—1)/2.

15

For even n > 4 we have an even number k£ > 2 of parts, since these parts are all
odd. From the proof of Theorem 2, Case 1, we have
(A@) = 24 B2
v ju— _ -

2 o = 9 2 3

which is greater than n/2 if k£ > 4.

The case k = 2 must be considered in detail. Suppose first that n/2 is odd and
both parts are equal to n/2. Then

n

w(Blln/2,n/2) = 2224 21

since (n/2,n/2) = n/2 and there is a factor of 2! in the denominator. We haven > 4
and n/2 odd, so n > 6 and this lower bound is greater than n/2. Now suppose that
the two odd parts are different, say @ and n — a with 1 < a < n/2. Thus

u(A(an—d)) = “Z% 4 (an—a)

o

+ (a,n) —1

AV
ol 3ol 3

Notice that the lower bound of n/2 is attained precisely for ¢ = [a,n — a] where
a < n/2 and (a,n) = 1. There are exactly ¢(n)/2 such values of a, where ¢ is the
Euler totient function. Thus r(n) = n/2 if, and only if; @(n)/2 is odd. For even
n > 4,0(n)/2is odd just if n = 4, or else n = 2p* for u > 1 and p a prime congruent
to 3 (mod 4). Since there are infinitely many such primes, we have r(n) = n/2
infinitely often. O

For even n > 4, let S(n) be the contribution of the terms of minimum 2-part to

i(n), 1.e.,

271/2
Sy= 2. oo
1<a<n/2
(a,n) =1

Experimentation with S(n) suggested the unexpected identity
vo(S(n)) = n/2 + p(n)/2.

In other words, to compute the 2-part one could replace 1/a(n — a) by 1 in every
term. This has been verified by Andrew Granville [3]. The identity shows that if
r(n) — n/2 is bounded, it must be due to the effect of other terms. It is difficult to
frame a conjecture about this with any degree of confidence. The data for 4 < n < 99

reveal that
r(n) =n/2+ ¢(n)/2

for all the even values of n except for 40, 48, 64, S0 and 96. For these inputs the
difference 7(n) — n/2 — p(n)/2is 3, 3, -1, 1 and -1, respectively.

16

5 Is There a Combinatorial Explanation?

The authors have been unable to discover any combinatorial explanation for Theorems
1, 2, and 3. To illustrate the difficulties, consider the fact that ¢(5) = 12. It follows
from Theorem 3 that v,(¢(5)) = 2, so a combinatorial explanation for the divisibility
of t(5) by 4 is called for. This would presumably lead to a natural grouping, based on
structural criteria, of the 12 unlabeled tournaments into 3 equivalence classes, each
with 4 tournaments.

Diagrams of these tournaments are given in the Appendix of Moon’s book [8],
along with the abstract automorphism group and the score sequence of each. Seven
have the identity automorphism group, four have C5, and one has Cs. Two have
(1,1,2,3,3) as the score sequence, three have (1,2,2,2,3), and the other seven score
sequences correspond to unique tournaments up to isomorphism. Thus no grouping
into sets of 4 can preserve the automorphism group or the score sequence.

The only structural property known to the authors which could be preserved by
such a grouping is self-complementarity. This suggests an approach to the seemingly
weaker problem of finding a natural grouping into pairs. That is, for a tournament
or graph which is not self-complementary, pair it with its complement. For n = 2
or 3 (mod 4) this gives a complete pairing of unlabeled graphs, since there are no
self-complementary graphs on n nodes in those cases. However for n = 0 or 1 (mod 4)
there are self-complementary graphs but no known natural groupings into pairs. Self-
complementary tournaments of any order exist, but again there is no known natural
grouping of them into pairs.

References

[1] R. L. Davis, The number of structures of finite relations, Proc. Amer. Math.
Soc. 4 (1953) 486-495.

(2] R. L. Davis, Structures of dominance relations, Bull. Math. Biophys. 16 (1954)
131-140.

[3] A.J. Granville, private communication, 1991.

[4] F. Harary, The number of linear, directed, rooted, and connected graphs, Trans.
Amer. Math. Soc. 78 (1955) 445-463.

[5] F. Harary and E. M. Palmer, Graphical Enumeration, Academic, New York,
1973.

(6] B. R. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-
Hall, Englewood Clhiffs, NJ, 1978.

(7] D. Lea, User’s Guide to GNU C++ Library, Version 1.39, Free Software Foun-
dation, Cambridge, MA, 1991.

[8] J. W. Moon, Topics on Tournaments, Holt, New York, 1968.

17

9] G. Pélyé, Kombinatorische anzahlbestimmungen fir gruppen, graphen und
chemische verbindungen, Acta Math 68 (1937) 145-254.

\v [10] G. Pélya and R. C. Read, Combinatorial Enumeration of Groups, Graphs, and
: Chemical Compounds, Springer, New York, 1987.

[11] J. H. Redfield, The theory of group-reduced distributions, Amer. J. Math. 49
(1927) 433-455.

[12] B. Stroustroup, The C++ Programming Language, Addison-Wesley, Reading,
MA, 1986.

[13] D. Tiemann, User’s Guide to GNU C++, Version 1.39, Free Software Founda-
tion, Cambridge, MA, 1991.

18

