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AN UNDERGRADUATE EXERCISE IN MFANIPULATION

J. M. HAMMERSLEY,* Trinity College, Oxford

Abstract
This paper contains an example of a problem which undergraduates (or even gradu-
ates) may care to tackle to improve their manipulative skills. It is quite a taxing prob-

lem, whose solution could profitably be spread over several weeks’ work. It may be
read in conjunction with my article ‘Room to wriggle’ (Hammersley (1988)).

PROBLEM SOLVING; SKILL AT MATHEMATICAL MANIPULATION

Speaking of his book How To Solve It, Pblya said: ‘Solving problems is a
practical art, like swimming, or skiing, or playing the piano; you can learn it
only by imitation or practice.... Our knowledge about any subject consists of
information and know-how. If you have genuine bona fide experience of
mathematical work on any level, elementary or advanced, there will be no doubt
in your mind that, in mathematics, know-how is much more important than
mere possession of information. Therefore, in the high school, as on any other
level, we should impart, along with a certain amount of information, a certain
degree of know-how to the student. What is know-how in mathematics? The
ability to solve problems—not merely routine problems but problems requiring
some degree of independence, judgment, originality, creativity. Therefore the
first and foremost duty of the high school in teaching mathematics is to
emphasize methodical work in problem solving. That is my conviction. ...’

Undergraduate courses in mathematics do not pay enough attention to
Pélya’s dicta, largely because the syllabus is overloaded with lectures devoted to
purveying information, and too often examination questions expect little more
than regurgitation of lecture notes. Even when riders are set, their manipulative
and problem-solving content has to be sufficiently slight to be handled within the
time constraints of a three-hour examination. To develop manipulative skills,
one needs to wrestle with a problem, which can be a time-consuming business.
You have to fiddle with expressions and equations to get them into amenable
shape. Examination questions often indicate to candidates the particular tech-
nique (familiarly signalled by the phrase ‘hence or otherwise’) that will most
expeditiously produce an answer. This spoonfeeding is a serious educational
shortcoming of examinations, because undergraduates do not have to pinpoint
for themselves that bit of their store of lecture-derived information that will
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’
serve their inmediate purpose: they do not learn what is useful for what, and do
not acquire the habits of judgment and independence of which Pélya speaks.

In this paper I shall give an example of a single problem which I hope may
serve as an exercise for undergraduates wishing to develop their manipulative
skills. It does not require any technical knowledge outside the ordinary under-
graduate syllabus, but it is not a particularly easy problem. It calls for persever-
ance and it would not serve its purpose if it were easy enough for the average
undergraduate to dispose of in an hour or two. The paper contains a solution of
the problem and also some hints and suggestions for the benefit of those who
may get stuck at various intermediate stages of the solution. But it is important
that you should manage as much as you possibly can from your own resources.
So read-the paper very slowly, resisting all temptations to look ahead before you
have made determined efforts to manage on your own. A few of the hints and
suggestions may be incomplete or even misleading, in the deliberate intent that
you should exercise some judgment in problem-solving on whether this or that
course of action is likely to be profitable.

To state the problem, consider the sequence of polynomials

paly) = 20 nry’ , (1)
generated by the recurrence relation
n—1 n
Pay) = =9 - Y (Zm)(—%)"" Pm(y) (n=12,.) )
m=0

starting from py(y) = 1. Prove or disprove the conjecture that the coefficients
an, (1 < r =< n) are all positive integers, find formulae for these coefficients, and
in particular an asymptotic formula when n — . Find an estimate for ;009 s00-
Well, good hunting; see how far you can get on your own before reading any-
thing further.

In the meantime, partly to prevent your eye straying towards the first sugges-
tion, let me say something about the background to this particular problem. It
is not an artificially created exercise: it arose naturally from a question set in the
Final Honours Examination in Mathematics at Oxford in 1985. Candidates had
to prove that a non-linear second-order differential equation had a unique solu-
tion under certain conditions, and to find bounds for this solution. They had
attended lectures on functional analysis; so the question was dressed up in the
language of Banach spaces and could be answered in such language to the satis-
faction of the examiners. However, functional analysis is a general-purpose
technique which is apt to banish interesting problems with a mere wave of
Franco—Polish gesticulation. In particular, the use of a supremum norm in a
Banach space is liable to waste pertinent information and hence to yield
unnecessarily weak results. By ridding this particular examination question of
its jargon and recasting it in terms of elementary classical analysis, I was able to
prove that the solution of the differential equation existed and was unique under
much more general conditions than the examination question had stipulated;
and I was able to find much more precise bounds for the solution, indeed
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bounds which were everywhere best-possible. Of course, this involved more
detailed work than could have been expected under examination conditions; but
it does illustrate the extent to which too much information, especially of the soft
mathematical species purveyed in lectures, has come to dominate and exclude
the fostering of know-how in undergraduate studies. In the course of this inves-
tigation, I ran across the polynomials defined by (2). I suspect that they are
well known to experts in differential equations; but personally I had not met
them before, so I had to start from scratch and work out their properties on my
own. They have some features in common with the Bernoulli polynomials; but
the Bernoulli polynomials have both positive and negative coefficients which are
not all integers: for example, the eighth Bernoulli polynomial is

7
-yt By -dyT+y®
when normalized to have unit coefficient for its highest power of y. There is
little in the definition (2) to suggest that the coefficients in p,(y) might not be
positive and negative rational fractions. So I was surprised to discover on work-
ing out the first 5 of the p, that a,, (1 <r < n <15) are all positive integers.

Could this also be true without the restriction n < 5 and could I find formulae
for these coefficients?

Suggestion 1. Use (2) to calculate p,(y) for 1 <n <5 and examine the
behaviour of the coefficients. Prove that a,, = 1. Carry the calculation beyond
n =5 as far as you can on a computer. Find a formula for a, ,_, forn = 2.

Amongst the software found in computing laboratories nowadays there are
general-purpose packages for manipulating polynomials and other algebraic for-
mulae. For example, with the package MACSYMA, one can feed in (2) more
or less as it stands: specifically in the form

Pniif n =0then 1
else (y— )" —sum((3)" ~"binomial(2n,2m)p,,,m,0,n—1)
ratsimp.

The command ratsimp caused the machine (in this case a mainframe VAX
785) to get on with the business of making substitutions and finally printing out
the polynomials p, with the coefficients expressed as rational fractions in their
lowest terms. The great advantage of this for the lazy man is that he does not
have to think: all the thinking has already been done for him by those who ori-
ginally compiled the package. On the other hand the sacrifice made for the sake
of laziness is rather similar to the sacrifice made in using functional analysis:
general-purpose tools are less efficient and necessarily more cumbersome than
tools specifically designed for particular situations. A general-purpose package
can be rather slow and use a great deal of storage space. Here the machine
successfully got as far as n = 12, taking 5 minutes for the job; but it gave up the
ghost at n = 13 because it had used up all its allocated storage space. Neverthe-
less, 5 minutes machine time for n < 12 is a great improvement on 15 minutes
work without a machine for n < 5. Here are the results of the hand calculations
for n < 5 and (in Table 1) the machine results for 6 < n < 12:
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Table 1. Specimen values of a,,.

r n==6 n=17 n=38 n=29
1 2073 38227 929569 28820619
2 2073 38227 929569 28820619
- -’\, 3 736 13573 330058 10233219
%& :\’O 4 135 2492 60605 1879038
= % 5 15 280 6818 211419
’ 6 1 21 518 16086
: 7 1 28 882
8 1 36
9 1

r n=10 n=11 n=12
1 1109652905 51943281731 2905151042481
2 1109652905 51943281731 2905151042481
3 393999940 18443289777 - 1031520165710
4 72346915 3386587600 189409454649
5 8140201 381046666 21311675172
6 619455 28997507 1621813676
7 34020 1592811 89086 800
8 1410 66132 3699531
9 45 2145 120219
10 1 55 3135
11 1 66
12 1
Suggestion 2. Is it true that a,; = a,, for n = 2? Can you write a special-

purpose programme that will handle (2) for n =

/
e

035

13? What is the largest value
of n that your special-purpose programme will reach? :

The use of generating functions, such as

el p,.(y)/\"
An
'20 Pa(y) Z

or, maybe, some other expression, is a well-worn technique for handling
recurrence relations, especially when convolutions are present. Is there a convo-
lution implicit in (2)?

Suggestion 3. Can you find a generating function suited to a solution of (2)?

If we write (2) in the form

n

(~0t-pn = 3 ()1

m=0

"pm(y) 3)

S

o
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and multiply both sides by A*"/(2n)! and sum from n = 0 to ©, we get

cosAVE-y) = 2 P,.()’)'(T), cos 3A. “
n=0 )

Hence a suitable generating function is

f9) = 3, palD) = se BhcosAVE=Y). (5)
n=0 ’

Suggestion 4. The conjecture cannot be true in general unless it is true in the
particular case r = 1, which will do for a modest start; so for brevity write
a,, = b,. Can you find a generating function for b,? Can you find an asymp-
totic formula for b, when n— ®? Can you prove that b, is an odd positive
integer? The square root in (5) is a bit of a pain in the neck: can you find a
transformation from y into some other variable x that will make things simpler?

Finding a generating function for b, is easy:

had A2n [af]
b, =2 = Atan 3A. (6)
Zl @2n)! ay ly=o

As an aside we may remark that the generating function for the Bernoulli
numbers is A cot 3A; so that our b, are, in an appropriate sense, reciprocal to
the Bernoulli numbers. Since

A%(/\ tan 1) = Atan 3A + 3A%(1+tan” §)), @)
we have
) o 2
Ao AT\
Y, @n=Dbagyss = W43 ), bugyr | ®)
n=1 n=1
and hence
n—1 2n
amnm=%2ﬂmﬁwpmm>m. )

The numBers b, can easily be calculated from the recursion (9), starting from
b, = 1. We can write (9) as

-1

S (3n)bmba-m (n odd),
@n-1)b, = mt (10)
2n—1), , MG (2 ;
(n_l)b%n+ > (zm)b,,,b,,_,,, (n even).
m=1

Also (2) gives the alternative recursion formula
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n—1

> (22,';)(—1)"""4""11:,,,. (11)

m=1

4
471, = (<1y"'n—

For the sake of induction on n, assume that b;,b,,...,b,_; are integers. Then
(2n—1)b, and 4" "', are also integers and, hence,

. 2n-3
b, = n*" ¥4 b,) — 2n-1)b, @n)™ (12)
m=0
is an integer. If by,b,,...,b,_; are odd integers, we have from (10) the
congruence (modulo 2) i
"~ -y
2n
m; (m) (n odd)
b, = :
m-1y G2 (2n
(n—l) + ,,,21 (2m) (n even)
—C1+3 S (20) = -2 (13)
3 2 \am )

which shows that b, is also odd. Finally (9) shows that b, is positive when
by,b,,...,b,_; are positive. This completes the inductive proof that b, is an
odd positive integer for all n = 1.

The right-hand side of (6) has a radius of convergence [A| = = and therefore

b 1/n
lll’}ljgp((z—’:)') =a2 (14)
However (14) is not accurate enough for an asymptotic formula for b, as
n— . Finding an exact formula for b,, that will yield a good asymptotic
formula, is an excellent test of whether an undergraduate can select the right
technique from amongst those bits of information learnt from lectures. Once it
is realized that the appropriate technique is contour integration, the procedure is
straightforward, because b,/(2n)! is the residue of sin ;‘gz/(zz" cos3z) at z = 0.
The integral of this function, taken round a square with vertices at z =
(£1i)2mm, tends to zero as m — o and, consequently, the sum of all its resi-
dues in the complex plane is zero. A simple calculation then gives, for all
n=l1,
4 < 1 48,
= | —= — = (2n)!—,, 15
by = (2n)! —; m2=0 G DE - O (15)

where the sum S, is defined by (15). Since S, tends to 1 very rapidly as n — »,
(15) provides a very good asymptotic expression for b,,.
A convenient transformation, that removes the square root in (5), is

y =x-x2 (16)

This converts each p,(y) into a polynomial g,(x) of degree 2n,

P
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pa(y) = q4(x), (17)
and (5) becomes
2n

FO) = 80,0 = Y, aale) G
n=0 :

= sec 3A cosA(3 —x) = cosAx+ (A 1sinAx)(A tan 3A). (18)

Suggestion 5. Show that all the coefficients in g,(x) are integers and dcduce
that the same is true for p,(y).

Equating coefficients of /\2"/(2n)' in (18) and using (6), we have

g,(x) = (-x)" + Z (Zn)(_ﬂ

2m) 2m+1 "7
1 2n+1
= z (2m+1)("l)mx2m“b"""" 19)
m=0

Since all the b, _,, in (19) are integers, we see that (2n+1)g,(x) is a polynomial
with integer coefficients. On the other hand, substitution of (17) into (2) shows
that 4"q,(x) is also a polynomial with integer coefficients; whereupon a straight-
forward modification of the argument in (12) proves that g,(x) has integer
coefficients. Hence p,(y) has integer coefficients; for otherwise there would be
a least value of r for each fixed n such that a,, is not an integer, and the
corresponding coefficient of x” would not be an integer.

Suggestion 6. Can you find an equation connecting p,_,(y) with the first two
derivatives of p,(y)? Can you deduce that a,, > 0 (1 <r <n)?

By (16) and (18)

_2__ f f_ﬁ__Z__Z
(1-d4p)53-22 = =5 = 253 = ~A%g = -\, 20

Equating coefficients of AZ" in (20) yields the difference-differential equation

(4y =1 pa(y) +2pp(y) = 2n(2n=1)p,p1(y); (21)
and hence, from the coefficients of y”~! in (21), the partial difference equation
2rr—1)a,, = rir+1)a, ,,;+2n2n—1a,_; ,; (L<r<n). (22)

Since a,, = 1 for all n = 1, we can use (22) to calculate all the a,, in the order
51,832,831, +8nn—1+n n—2--+»8n1,-..; and in this process each a,, is a posi-
tive function of previously calculated positive coefficients. Hence a,, >0
(1 <r<n) and we have now proved that all these coefficients are positive
integers. The relation (22) provides an easy method for actually calculatmg an,
(1 <r<n=<20 or 30, say) on a computer: the only limitation is that the
numbers a,, sooner or later become unmanageably large. This calculation also
contains useful intermediate checks a,; = b, against values computed from
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(9) or (11). The case r =1 in (22) gives an affirmative answer to the query
a,, = a,, in Suggestion 2.

Suggestion 7. Generating functions afford a standard technique for solving
linear partial difference equations. Can you solve (22) in this fashion?

Equation (19) gives an explicit formula for g,(x). Can we use it to obtain an
explicit formula for p,(j) in terms of the coefficients b, (n = 1,2,...)?

Suggestion 8. More generally, given any polynomial Q(x), is there a pro-
cedure for determining whether or not there exists a polynomial P(y) = Q(x)
connected with it under the transformation (16) and for calculating P when it
does exist? Note that (16) is a (1,2)-correspondence, since it is linear in y but
quadratic in x; does this imply a possible ambiguity in the correspondence
between P and Q?

Consider first the numerical example
Q(x) = 4+3x—10x2+13x> +x* = 23x> +31x5 - 20x " + 5x8, (23)

and write down the coefficients of Q in the first row of the table below:

4 3 -10 13 1 -23 31 =20 5 0 O
3 -7 67 -16 15 -5 0200
-7 -1 6 -10 5 0 00O
-15 =5 0 0 00O

5 0 0 0 000

0 0 0 00O

The first entry in the second row is a copy of the entry above it. Each remaining
entry in the second row is the sum of the entry above it and the entry to the left of
it: thus =7 = —10+3, 6 = 13—7, etc. Subsequent rows are obtained from their
preceding rows by the same rule, until we reach a row consisting entirely of zeros.
The leading elements in the rows of this table give the polynomial

P(y) = 4+3y—Ty2—y>+5y* (24)

which corresponds to Q(x) in (23) under (16). On the other hand, had Q(x) been
a polynomial for which no polynomial P(y) existed, the procedure would not have
terminated with a row of zeros.

The ballot numbers, so-called because of their appearance in the mathemati-
cal theory of elections, are the numbers in the infinite array

1111 1 1 1 1

123 4 5 6 1
25 9 14 20 27 ..
ﬁ(@ 5 14 28 48 75 ... 25)
14 42 90 165
-PSUK | 42 132 297
132 429
429

formed by the foregoing rules from a first row whose entries are all 1.

»ie uummuﬁuq
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Suggestion 9. Can you explain and validate the calculation from (23) to .(24)?
Can you find a formula for the ballot number B;; in the ith row and jth column
of the array (25) for 1 <i =< j?

Given a polynomial P(y), the transformation (16) uniquely determines a
corresponding polynomial Q(x) = P(x—xz). On the other hand, the inverse of
(16) is two-valued:

x = 5=3Vi-dy; (26)
and thus, given a polynomial Q(x), (26) determines a pair of functions
Q@4 =1VIi-4y) = P(y) =RHVI-%, @

where P and R are polynomials in y. But the right-hand side of (27) is a poly-
nomial if and only if R = 0. Hence, if there exists a polynomial P(y) = Q(x),
the choice of alternative sign in (26) is immaterial. Thus in all cases we may
take the inverse of (16) to be

x=1-1VT=dy = y+y2+2y° +5y4 + 14y5 + ... (28)

on expanding the square root by the binomial theorem for |y| < .
The rules for generating the array (25) can be summarized as

By=1 (j=1); (29)
Bi=Bi-1,; (= 2); (30)
Bij = Bi-1,j*Bij-1 (j>i>1). (31)
We shall.now prove that, for j = 1,
xl = 3 Bietisy . (32)

This is the jth power of the series (28); so it commences with the term y’; and,
accordingly, with i = 0 in (32), we have By; = 1, which satisfies the rule (29).
Next, from (16),

'20 Birtivey P =xt=x-y = .21 Bisristy' ™! (33)
= =

and comparison of the coefficients of y*2 in (33) confirms the rule (30). Simi-
larly, we confirm the rule (31) by comparing coefficients in the expansion of the
identity

x/= xi+l+yxj_l. (34)

Having established that (32) conforms with the rules (29), (30) and (31), we can
assert that the expansion (28) does indeed represent the elements on main diag-

onal of (25): that is to say
Bii = ‘1‘(21__ 2), . (35)
ivi—1

since this is the general coefficient in the expansion (28) and not merely one of
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the few in (25) as far as it was written out. Returning to (25) and its rules of
formation, we see that the elements 1,3,9,... in the second superdiagonal are
the first differences of the elements 1,2,5,... in the first superdiagonal; and
likewise the elements in the kth superdiagonal are the first differences of the
elements in the (k—1)th superdiagonal (k =2). By writing down the first,

second, third, ... differences of the sequence (35) and noting how they behave,
the formula )
i+1—ifi+j-2 .
,9ii=1_j_(tjil) l<i<j)) (36)

is readily suggested; and the truth of (36) is checked by confirming that it
satisfies the rules (29), (30) and (31). Of course, anyone with enough intuition
to spot (36) straightaway would not need to go through the investigatory argu-
ments from (32) to (35) as one of the possible ways of arriving at (36). As a
matter of fact, they were the means by which I myself reached (36): and it was
not until I had got to (36) via (32) to (35) that I recognized that I was dealing
with the ballot numbers, this recognition being stimulated by writing this part of
the paper on 11 June 1987, the day of the British general election.

It remains to explain why the procedure from (23) to (24) works. When I
was a schoolboy doing elementary algebra and dividing one polynomial by
another, we all had to learn how to find quotients and remainders by the
method of detached coefficients (which should be self-explanatory terminology).
The procedure given is simply this method applied to repeated division of Q(x)
by x—x2. The array (25), if preceded by an initial row 0 1 0 0 0
is the corresponding procedure for Q(x) = x and (32) is the procedure for
Q(x) = x/, which, by the linearity of vector spaces, must yield numbers embed-
ded somewhere in the array (25), and it is not difficult to see that the choice of
suffices and indices in (32) gives the appropriate embedding.

Finally by (32), if (16) transforms a polynomial P(y) into

Q(x) = 2 ijiv
J

then
j L
P(y) =2 Py =Q+ 20 20 QjBi+l,i+jy‘+l
r j>0i=
=00+ ), i &(2i+j_l)yi*’ (37
° j>0i=0 i+j\i+j-1 -
Hence
_ Y9 2r—j—1) )
P35 Y o= 8
and (19) and (38) give
(de-v]
1 2n\(2r—2m—2 m
O =~ (2";)( r r_”; )(—1) by (1 <r<n) (39)

m=0

R
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as the required solution of the partial difference equation (22). In (39),
[3(r—1)] denotes, as usual, the integer part of 3(r—1).

Of course, this is not the only way of solving (22); and for an alternative
method we return to Suggestion 7. Early on in the paper, you were warned that
some of the suggestions might be misleading and in one sense this is true of
Suggestion 7. It is certainly possible to tackle partial difference equations with
generating functions, but, in the present case, this merely leads back to (5). So
we need an alternative manipulation of (5) and this is provided by the Euler
numbers e, defined by the expansion

-]

2n
secA = 2 enﬁ (Al < 3m). - (40)

n=0

Suggestion 10. Can you prove that the Euler numbers are odd positive
integers and can you find an exact formula for e, and an asymptotic formula as
n — ©? Can you find a formula for a,, in terms of the Euler numbers?

The identity

® 2n i 2n
1 = cosAsecA = (Zo (—1)"(;—'1)—!)(2 e"_(_;_nﬁ) 41)

n=0

yields the recurrence relation _
n—1 on
— _1\yn—1-
e = mZ=0( ) "‘(Zm)em =1 “2)

starting from ey = 1. Successive values of e, can be calculated from (42), which
(by induction on n) shows that the Euler numbers are odd integers because
¢

n—1
2n\ _ oan-1_1 =
”lz:o (2m) =2 =1 (mod2) (n=1). (43)
The first few Euler numbers are €p,€,... = 1,1,5,61,1385,50521,... . Con-
tour integration, as in (15), provides an exact formula
gn+t * (_l)m 4n+lTn ’
ep = (2")!'1T—Zn—+T 2z W = (2n)! e n=0), (44)

where the sum T,, defined by (44), satisfies T, > 1-3"@*1 > 0, thus proving
that e, > 0 for all .
We can write (5) as

hod A2 i e, A i on A2
’ZOP'.()’)@ = (n=0 y (2”)!)("20 (y—3) E2—n)_')’ (45)

which gives

P = 2 (2 )y =1y "mem 02 0) (46)

m=0
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and thence

n-r

a, Z(=H" Y (h)("_m)(—l)’"em l<rs<n). @7

o 2m r

The two alternative solutions (39) and (47) of the partial difference equation
(22) are of course equal to each other and this provides a set of identities relat-
ing the numbers b,_,, and the numbers e,,. The solution (39) is useful for cal-
culating a,, when r is small, whereas (47) is useful when n—r is small. In fact,
writing r = n—k in (47), we get

k

2n —
annx = (D% S ( 2m)(2_$)(—1)’"em 0 <k<n). 48)
m=0 :
In particular
By oy = (;) (n=1); (49)
n n
tnnz=33)+3(;) 2> 2; (50)
_an n n
arrs = 1) s 2 61(2) 0. 5
These results suggest that there might be a formula of the type
k
Qn,n-k = 2 Cjk(]-_:k) (n = k) (52)
j=1

Suggestion 11. Can you prove (52)? Can you obtain a partial difference
equation for cj by substituting (52) into 22)? Are the numbers ¢y (1 < j < k)
all positive integers? Can you identify ¢;; and Cri?

This paper is an exercise in manipulation and the substitution of (52) into
(22) offers a worthwhile opportunity for practising manipulation of algebraic for-
mulae. Manipulations can be classified by borrowing the terminology of U.S.
boxing weights:

Heavyweight no limit
Cruiserweight 81 kg
Middleweight 75 kg
Light middleweight 71 kg
Welterweight 67 kg
Light welterweight 633 kg
Lightweight 60 kg
Featherweight 57 kg
Bantamweight 54 kg
Flyweight 51 kg
Light flyweight 48 kg

Undergraduate courses rarely go beyond the flyweight class in manipulation; but

EPSERTERTS . =
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the professional mathematician often needs to wrestle with quite heavy algebraic
expressions. For heavyweight manipulations special algebraic techniques are
necessary: a typical example is the technique of algebraic pattern functions dis-
cussed in Chapter 12 of Kendall and Stuart (1969). The present case of deter-
mining a partial difference equation by substituting (52) into (22) is much less
demanding, say light welterweight, but nevertheless it calls for a modest degree
of manipulative skill, which will be described presently. First however you
should see how much you can manage on your own before reading the hints
given below.

Equation (48) is stated under the condition (0 < k < n). However, for a
fixed k = 1, we can regard the right-hand side of (48) as a function defined for
all n. In this light (22) is a polynomial of degree 2m in n, and (z=m) is a poly-
nomial of degree k—m in n. So the right-hand side of (48) is a polynomial of
degree 2k in n. Also, whatever the value of m subject to 0 < m < k, the pro-
duct (22)(z=) is divisible by the factor n(n—1)...(n—k+1). Whenn =k =1,
the right-hand side of (48) is

k

55 Y (2)nmen = 0 (53)

m=0

by (42). Hence a, , is a polynomial of degree 2k in n, which vanishes when-
ever n = 0,1,..., k. Consequently a, ,; can be written in the form (52) for
some constants cj. Now put n = k+1in (52). We get

Clxe = Aks1,1 = bis15 (54)

S0 ¢y is a positive integer. Nextputn =h+k (1 <h <k)in (52):

h-1
h+k
Chk = ah+k,k—lzl Cjk(j+k)- (55)
If C1, Cokse--»Ch—1,k ATE INLEGETS, SO IS Cpg . Thus, by induction on A, all the cj
are integers. Comparing coefficients of n?* in (48) and (52), we find that
Crk = €k- (56)

I shall now describe how the substitution of (52) into (22) leads to the partial
difference equation

J@j=Vep = (+R[Rk—j+1)ci—y 4+ 3G +k=1) ¢t k1 + )6 x-1]
+3j(j+ D1 A <j<k) (57)

with the convention that coy = x x-1 = Ck+1.k-1 = 0. The actual calculation
should easily fit on half a sheet of paper, though it will take more than that to
describe it here. The essential thing in manipulation is to use an abbreviated
notation and never to write down more than is barely necessary, because too
many symbols cluttering up the working will inevitably cause mistakes. The
basic idea behind the calculation is to compare coefficients of the binomial quan-
tities (,;’k) in (52). However j+k is too elaborate to keep repeating; so we
replace the right-hand side of (52) by
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R Ca—k,k (:), (58)

the symbol a operating as a dummy over which summation is tacitly understood.
Dummy summation further cleans up and lightens the notation since we no
longer have to carry a ), sign in (58) and subsequent equations. We also
arrange the calculation so that the second suffix k in (58) shall take the value k
on the left-hand side of the manipulation and the value k—1 on the right-hand
side. With this understanding, there will be no need to write down the second
suffix; so (58) appears in the simpler form

Cank (:) ) (59)
To start_the calculation, we take r = n—k and write (22) in the form
@n-Dn(a, 4k —8n-1,n-1-1) T k2k+1~-4n)a, ,_;
= 3[n*— k- Dn+k(k—1)]a, n_x-1)- (60)

Notice how, as previously mentioned, the second suffix uses k on the left of (60)
and k—1 on the right of (60). The expression n(a, ,_x~a,-1 ,-1-x) has been
isolated to take advantage of the identity

"[(g)_(n; 1)] = “(2) (61)

n(:) = (a+l)( " )m(") (62)

a+1 a

We also need

and its iterate

nz(Z) = (a+1)(a+ 2)(a : 2) +(a+1)Q2a+ 1)(0[;' 1) +a2(Z). (63)

Using (61) and (62), we can now write down the left-hand side of (60) as

Cack Hz(a+ 1)(a'+’ 1) +2a(:) - (Z)]a+k(2k+ 1)(2) — k(e + 1)(‘111) -4ka(:)}

- st tia-20(, 7 a4

= [2ata-2k- 1, + a0 2= 2=, ][] (64
because a +1 can be shifted to a, being a dummy. Putting @ = j+k in (64) and
restoring the second suffix, the coefficient of (,-1‘ ,5 on the left-hand side of (60) is
the left-hand side of

](2]_1)C]k_2(]+ k)(k"]+ l)cj—l,k
=(j+R[3G+k=1) oy k-1 HCj k-1]1+ 3G+ 1) Cjs1 k-1 (65)

whose right-hand side equals the corresponding expression obtained from the
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right-hand side of (60) using (62) and (63); and this gives (57). I have not given
here the detailed working for the right-hand side of (65), because you may find
it useful manipulative practice to provide it yourself by writing down the equa-
tions that correspond to (64).

We have already proved that all the coefficients cj are integers, and we can
now show that they are positive. Starting from c¢;; = 1, given by (49), we can
successively calculate ¢y3,¢2,...,C1k,Coks--+» Cki»- - in that order from (57). At
each stage of this calculation, the right-hand side of (57) consists of non-negative
quantities previously determined at an earlier stage, and at least one of the
terms on the right-hand side of (57) will be strictly positive. Hence cy > 0 by
double induction on j and k. The calculation contains useful periodic checks
(54) and (56) against the values of by, and e, already found from (9), (11) and
(42); and it can be programmed on a computer to yield the typical results

shown in Table 2. ﬂ,} 2 S??(O/g

Table 2. Specimen values of cj.

j k=1 k=2 k=3 k=4 k=5 k=6 k=1

1 1 3 17 155 2073 38227 929569 T———

2 5 70 1143 23716 623753 20454498 - . ,ip -
3 61 2317 82286 3243270 147624355

4 1385 110556 7258090 484343420

5 50521 7293671 796220487

6 2702765 639139202

7 199360981 " g o

j k=8 k=9 k=10 P i

1 28820619 1109652905 51943281731 :7q1f'§?; /
2 821446715 39737099776 2281831661709 R,
"3 7822241867 481437876668 34219261121916

4 34986532875 2798726703448  249890883433044

5 83060436121 8943001405982  1026519528762378

6 107687984425  16561891136560 2534516719669 830

7 71970566865  17708437066700  3838877672220204

8 19391512145  10138324694008 3490455615793 668

9 2404879675441 1747839965669 899

10 370371 188237525

Equations (39) and (47) are not well suited as starting points for an asymp-
totic formula for a,, as n — «, because they both contain the oscillatory factor
(=1)™. On the other hand, (52) consists only of positive terms and so offers
good prospects, provided that we can get results about the sizes of the
coefficients cj.

Suggestion 12. Can you find good inequalities for the coefficients cj
(1<js<k)?

The partial difference equation (57) is linear and, accordingly, you might like
to try solving it by means of a generating function. However this is a didactic
paper whose purpose is to illustrate a variety of manipulative techniques and so
it is appropriate instead to describe a different approach, called the method of
monotone normalization, which is applicable to difference equations that are

146 9
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known to have positive solutions. Suppose that we seek a solution y; > 0 of a
(possibly non-linear) partial difference equation which can be written in the
form

SiucYik —¥ixYi-1,k = Fasts Yuvs---) > 0, (66)
where ¢, and ¥, are known positive functions of j and k and Fj is some posi-
tive monotone function of its arguments yy,¥,,,-.. - Together with a function

wy to be chosen presently, we then define a function yj, called the monotone
normalizer, by

j .
Xk = o || i—z >0 67

i=1
and we make the transformation
Yik = XjkOjk (68)
in (66) to get
8ix—8j—1.k = (bjxix) ' F > 0. (69)

Thus 8; is an increasing function of j for each fixed k& and, accordingly,
81k < 8 < 8y (1 <j<k). Suppose further that the quantities 8y, and &y
can be calculated from the boundary conditions associated with (66) and that a
suitable choice of the function w, in (67) makes the difference 8, —8;, reason-
ably small in comparison with the quantities 8;. Then we have a satisfactory
inequality

X1k < Vi < X, (1=<j<Kk). (70)

In favourable circumstances this inequality can now be fed back into the right-
hand side of (69), leading to an improved version of (70), and iteration of this
process can yield an exact solution of (66) or else bounds of arbitrarily tight
accuracy. We now apply this technique of monotone normalization to (57).

In (57) make the substitution

kL .
Gk = (j % )4/ “exd, (71)
to get
de; 4 k—j (k—plk—j—-1)
dix—dj_y 1 = e (%d,‘—l.k—l"'_2j_1di,k—1+—(zj_l——)(2j+1) div1,k-1)- (72)
Thus dyz,dax,. .., dx is an increasing sequence because the right-hand side of

(72) is positive. By (15), (44), (54), (56) and (71)

2 _ 2(1+_1_)5k+1 _ 2% by 4y
2k) Tg k(k+1)e,

— = dl[c = dlk = dkk = 1. (73)
™ m™

We can now feed (73) back into (72):

e Jﬂmm
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4ek_1(1+ k=j (k—n(k—f—l))

djk—dj—l,k =

e \4 2/—-1 (2j-1@2j+1)
e (4k?-1) ﬁsz_l(Zk-i-l)( 11 ) 74)
ex(4*—1) 8T, \ 2k J\2j—-1 2j+1)
Now sum (74) over j from j = i+1toj = k to get
(k- i)
= <d, (I1sis<
Tk S Usish 75)

because Ty < T,. For k> 1, the lower bound in (73) leads to an "upper
bound for dj . A little care is appropriate here because ¢ x—; = Cx414-1 = 0,
by definition, and therefore we ought to have dy ,_; = di4 x—; = 0 when they
occur in (72). However, when they do occur in (72), they are multiplied by zero
factors; so it will make no difference if we use (73) in the form

22k=1)S  _
e — -~ d' p—
w(k=2) T K71

when feeding it back throughout (72). We then obtain, after summation from
j=2t0j=1,

A<j<k+1>2) (76)

wS2k-Dk—) _  mk—i)
AT (2k-2)k(2i+1) =~ 4k(2i+1)

We may remove the restriction k > 1 in (77), because (77) is trivially true when
i=k=1. It is possible to sharpen the inequalities (75) and (77) by feeding
them back into (72); but we shall not do that here since they are sharp enough
in their present form for what comes next. Writing j for i in (75) and (77), we
can conclude from (71) that

(1— M)(j;ik)‘” ke, < ¢ < (1_ Rt )(j;jk)‘u—kek (78)

dy < 1- Isissk>1). a7

8k(2j+1) 4k(2j+1)
holds for all 1 < j < k. From (52) and (78) we have
, .
|4 wV
(U— W) S Gpp-k S 4k(U E) (79)
where

(l+k)(]+k) V= 2 (,+ k)(é;kl) (80)

Suggestion 13. Can you sum the series U and V in (80)?
In the identity

(1+2)> Z ( )(1+zz)s A=) = i Z (?)(f)z'zz"-zf“ @81)

5=0
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pick out the coefficient of z**~2*, Then ¢ must be even, say ¢ = 2j, and

= j+k. This gives
k
2n\ _ n \(j+k\,;
(o) = 2,15 (82
j=0
and, hence,
2n n
o= ()
Similarly picking out the coefficient of z2*~%*1 and putting ¢t = 2j+1, we find
vV _ 1 2n\ (n
k - 2n-2k+1 (Zk) (k) 9
With r = n—k, we get from (79), (83) and (84)
= Snrf(2m\(0 B Y _ (M) _
a, = 4"”[(2r)(1 2r+1) (’)(1 g,,,)} I=sr<n), (85)
for some quantities g, that satisfy
F<imsg,<in’<4$ (A<r<n). (86)
Since
n\ /(2n 1
0<(r)/(2r)s2n—l 1=sr<n), (87)
we have
a,, = :::: (3’:) as n — o and r = x; (88)

and the error in this asymptotic formula is bounded by estimates provided by
(85) and (86). However, (88) does not provide for the case when n — % while r
remains finite; and to deal with this remaining case we define 6,, by

€, (2n
a = 20, 0 <r<m; )
and we expect the existence of the limits
6,=1imé, (r=0). (90)
n—»w

Suggestion 14. Can you prove that the limits (90) exist? Can you calculate
6,?
Substitute (89) into (22), and use (15) and (44) to get

2
™ Tn—r—l

S bl ol sr<
4(4)'2—1) Tn_ron,r-ﬂ (1 r<n) (91)

onr_en—l,r-l =

and

, Opn = 1. (92)

SrRA ] e e e s




An undergraduate excercise in manipulation 19

Since S, > 1 and 7, > 1 as n — o, the limits in (90) exist forr =0 and r = 1:

2
0, = = —,
0=0, 6 - (93)
Fix r=1 and let n — » in (91). Then 0,+1 exists if 6, and 6,_; both exist.
The existence of 6, for all r = 0 now follows from (91) and (93) by induction on
r and

4
b1 = 3G’ =1)6,-6,.) (r=1). (94)

From (85), (86) and (87) with fixed r = 1, we have

2
— w = limi — i <
= 3e+1 l',‘.'l.'i‘f(l 2r+1) 6
: 8nr ™

= "T-fi’p(l 2r+1) Sl-w ©3)

Hence 6,,; > 0 and (94) gives 6, > 6,_, (r=1). Consequently from (93) and
(95)

2

w=01<02<...<0,—»1 asr— w, (96)

In principle, successive 6, can be calculated from (94), starting from (93);
and 0, is a polynomial of degree 2r—1 in (2/m). For example

64 = 1575(2/m)7 - 630(2/m)5. : (97)

However, as r increases, the coefficients in these polynomials increase even
more rapidly than the powers of (2/m) decrease; so, for large r, 0, is the sum of
large quantities of opposite signs and the value of 6, depends critically upon a
highly accurate value of 2/m. Thus, if we use 7 = 3.14159 rounded down to
five places of decimals, we find that (94) yields 6,y = 8.08x10%!, whereas ‘
m = 3.14160 rounded up gives 6,y = —2.24x10%2. Even with respectively
rounded down and up to thirty places of decimals, we can only assert that
-1.51x10" < 0y < 1.53x107, whereas we already know that 0.970 < 6,5 <
0.981 from (95). Further details appear in Table 3 below.

Entries in the second column of Table 3 are the correct values of 6, calcu-
lated from formula (103) correct to ten places of decimals. The incorrect values
of 6, appear as entries in the last six columns of this table and are of the typical
form 808:32 = 0.808x10%?, —224:33 = —0.224x10%, etc. All such entries were
calculated with quadruple-length (128 bits) floating-point arithmetic from the for-
mula (94) but are only quoted to three significant places of decimals; and blank
entries in the last six columns represent results that are correct to three
significant decimals. Calculations in the column headed w5 were performed
with 7 = 3.14159 rounded down to five places of decimals and, likewise, with
m = 3.14160 rounded up to five places in the column headed w5 . Similarly in
the last four columns calculations used = rounded up or down to fifteen or thirty
places of decimals. :
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* Table 3. Correct and incorrect values of 6,.

r 6, u w5 s s T30 730
1 0.6366197724

2 0.774 036 8264

3 0.8353955140

4 0.8703708798

5 0.8930238569 896: 0 886: 0

6 0.9089096752 101: 1 620: 0

7 0.9206739896 681: 1 —154: 2

8 0.9297399179 458: 3 -—127: 4

9 0.9369419967 467: 5§ —129: 6

10 0.9428023179 605: 7 -—167: 8 - 941: 0
11 0.9476643935 970: 9 —269:10 103: 1 669: 0
¥ 0.9517635686 189:12 —523:12 179: 2 -532: 2
13 0.9552665275 438:14 —121:15 393: 4 —-126: 5
14 0.9582946508 119:17 -330:17 107: 7 -—342: 7

15 0.9609384388 377:19 —104:20 339: 9 -—108:10
16 0.9632667512 137:22 -379:22 123:12 -393:12
17 0.9653329141 566:25 —157:25 509:14 -162:15 107: 1 859:
18 0.9671788694 264:27 —732:27 238:17 -759:17 510: 2 —486:
19 0.9688380598 138:30 —383:30 124:20 —397:20 262: 5 -259:
20 0.9703374792 808:32 —224:33 726:22 -—232:23 153: § -151:

WU O

Since incorrect values of 6, originate from multiplying small differences
6,—0,_; by increasingly large factors (4r*—1)(2/=)? in (94), it might seem sensi-
ble to calculate the 8, by some backward-shooting technique. For example, sup-
pose we take a pair of trial values 6,_, and 8, for some largish value of n, say
n = 20, we could successively calculate 6,9, 0,g,... from (94) until we reach 6,
and 6;. Can we then iteratively adjust the trial starting values 69 and 6, to
ensure that §; = 2/m and 6, = 0? A little experimentation on a computer
should convince you that this idea does not work: in fact, although 8, can easily
be made to equal 2/m by multiplying all 8, by a suitable constant, the calculated
value of 6, will remain obstinately indistinguishable from zero whatever the trial
ratio 6,9/6,, might have been. There are several other types of iterative possi-
bility, but they are all liable to fail because there is a concealed eigenvalue prob-
lem associated with (94). In short, if we consider the more general recurrence
relation, involving a constant ¢ # 0,

0,.1 = £ X4r2=1)(6,—6,_1), 6,=0, 8 =&, (98)

instead of (93) and (94), it will emerge that the 6, can only be bounded as
r — » when £ is an eigenvalue, of which £ = 37 happens to be a solution.

Suggestion 15. Can you solve the eigenvalue problem enunciated above?

Since (98) is a second-order linear difference equation, its general solution is
a linear combination of two independent solutions ©, and &,

9, = AO,+BP,, (99)

where the constants A and B are to be chosen to satisfy the initial values 6, = 0
and 6, = ¢!, Instead of expressing ®, and @, as polynomials in £ we
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express them as power series in £ whose coefficients decrease much more rapidly

than the powers of ¢ increase. Thus, substituting @, = ¥, C,,£¢" in (98), we find
that n

~ % s 62 .
6, = EOE 2(1-2t=2r)" (100)

upon equating coefficients of £”, and similarly

T ast-1\w T £
P, = (l_[ ?)(SZO’UI m) (101)

s=0
0 -1
In (100) and (101) an empty product, such as [[ or [[ is interpreted as 1. In
particular (100) and (101) give =1 s=0
@, = cosé, O, =By =¢sing, P = —¢ 2cosé. (102)

The first product in (101) tends rapidly to —= as r — ®. So there will be a
bounded solution of (98) if and only if B = 0 in (99). The initial conditions for
6y and 0, in (98) give A =sin{ and B = —{cos§. Hence cos¢ = 0; and the
appropriate eigenvalues of ¢ are £ = jw+mm, where m is an integer. The
appropriate solution of (94) is therefore

1
0 = 4-2=()1=1_[l 8(1-2t-2r) (103)

As already mentioned, (103) provides the correct values of 8, in Table 3. Asan
aside, we may remark that the series in (100) and (101) could have been
expressed in closed form in terms of Bessel functions of half-integral order; but
this would have led back to a polynomial in ¢! which, like (97), would have
been unsuitable for numerical calculation.

From (89) and (90) we have finally arrived at the asymptotic formula

ey, (2n
By = 4"_2(2r) 0, (104)
We can also make use of Stirling’s formula:
n! =n"+%e-"(2ﬂ)§(1+—l—+...), (105)
_ 12n
to get a rather less accurate but sometimes more convenient asymptotic formula

2n+3% _1_
4n (1+24n)

—2(n—-r)

e 1

el 1 (7) (1— 32n—2r+1)9r (106)
r+3 R

mr (1+ 24r)

by substituting (44) into (104) with the approximation T, =1-372"1 Table 4
gives the exact values of a,, together with the approximations (104) and (106)
for n = 10, and Table 5 for n = 15. The notation used for powers of 10 in
Tables 4 and 5 is the same as in Table 3. The relatively poor performance of

p, =




g
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Table 4. Exact and approximate values of a,, when n = 10.

r Exact (104) (106)
1 1109652905 1109652904:10 11102:10
; ?‘ 2 1109652905 1109652896:10 11098:10
5 3 393999940 393999917: 9 39403: 9
4 72346915 72346882: 8 72350: 8
- 5 8140201 8140172: 7 81404: 7
6 619455 619438: 6 61945: 6
7 34020 34013: § 3401: 5
8 1410 1408: 4 1407: 4
"9 45 4450: 2 4423: 2
10 1 9428: 0 8003: 0

. Table 5. Exact and approximate values of a,, when n = 15.
Exact (104) (106)

~

1 1291885088448017715 129188508844799:19 129255:19
2 1291885088448017715 12918850884 478:19 129210:19
3 458704 384 454 574 365 4587043844541:18 458741:18
4 84228064 915705 380 842280649151:17 842318:17
5 9477041183 699628 94770411831:16 947731:16
6 . 721200878840225 7212008785:15 721214:15 .
7 39615920415765 . 396159203:14 396164:14
8 1645181597880 | 164518155:13 164520:13
9 53474070910 5347406:11 534744:11
10 1397545578 1397543:10 139755:10
11 30008550 300080: 8 300081: 8
12 538720 5386: 6 53864: 6
13 ' 8190 8181: 4 8179: 4
14 105 1042: 3 1036: 3
15 1 9609: 0 8157: 0

(106) could be improved by taking further terms in Stirling’s approximation
(105). However (106) comes into its own when n, r and n—r are all so large
that the factorials and e,,_, in (104) cannot be computed without the use of (44)
and (105): for example using zign 2 as the next term after &n~tin (105)

000,500 = 0.7421787178... X 107" (107)

In summary, we have proved that the numbers a,, (1 <r =< n) are all posi-
tive integers, we have got specific formulae (39) and (47) for them, together
with asymptotic expressions (104) and (106). The route adopted in this paper
for reaching these results was chosen principally to illustrate various manipula-
tive techniques. It is not the only available route nor the shortest one: you may
well and properly have followed a quite different course provided that it led to
the desired results. The main thing is that you should have developed enough
manipulative skill to get the results somehow.

If, following Whittaker and Watson, we define the Bernoulli numbers
Bl= é’BZ= %’B3= 3!2’ ... by

@
B,z™

Tt =1-3cotiz, (108)

n=1
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then the b, = a,; in equation (6) are related by b, = (2***!-2) B, because of
the identity tanx = cotx—2cot2x. Professor Knuth tells me that these b, are
known as the Genocchi numbers (see Sloane (1973)). Thus Table 2 has Genoc-
chi numbers at the top and Euler numbers at the bottom. Knuth also remarks
that MACSYMA will compute the polynomials p,(y) rapidly with comparitively
little memory if one uses taylor(f(z)+f(-z),2,0,20), then ratsubst,
then tay lor again.

I am indebted to my colleague Giuseppe Mazzarino who wrote programmes
for and calculated the entries in the tables.
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