Dear Neil,

Re: your sequence N652 BAXTER PERMUTATIONS.

I have not the reference to see how they are actually defined but I do know 1, 2, 6, 22, 92, 422, 2074 and 10754 are the row-sums across the generalized binomial coefficient array obtained from 1, 4, 10, 20, 35, 56, 84 ... the third column of Pascal's left-adjusted triangle, the ones are in the zeroth column!!

\[
\binom{m}{n} = \frac{Q_m Q_{m-1} \cdots Q_{m-n+1}}{Q_n Q_{n-1} \cdots Q_1}
\]

with \(\frac{1}{(1-x)^4} = \sum_{n=1}^{\infty} Q_m x^{n-1}. \)

If you could be kind enough to send along a definition of the Baxter Permutations from Mathematical Algorithms MA4 2-25-67 then perhaps I could verify this. Sincerely, Vern

Please respond!

(over)
<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>n!</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>24</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Q_m</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>35</td>
<td>56</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\binom{3}{0} & = (3) \quad \binom{3}{1} = (3) \\
\binom{3}{2} & = (3) \quad \binom{3}{3} = (3)
\end{align*}
\]

\[
\begin{align*}
\binom{4}{0} & = (4) \\
\binom{4}{1} & = (4) \\
\binom{4}{2} & = (4) \quad \binom{4}{3} = (4) \\
\binom{4}{4} & = (4)
\end{align*}
\]

\[
\frac{4!}{3!1!} = \frac{24}{6} = 4
\]

\[
Q_1 = 1
\]

\[
\begin{bmatrix} m \\ 1 \end{bmatrix} = Q_m \quad \begin{bmatrix} m \\ 2 \end{bmatrix} = \frac{Q_m Q_{m-1}}{Q_2 Q_1} = \frac{Q_m Q_{m-1}}{4}
\]

\[
\begin{bmatrix} m \\ 2 \end{bmatrix} = \frac{Q_m Q_{m-1}}{4} = \frac{1}{4} \binom{m}{3} \binom{n-1}{3}
\]

\[
n \geq 4
\]

Ref. VEH.
\[
I > \rho > 0 \quad \Rightarrow \quad \theta = (\rho) \frac{\partial \rho}{I}
\]

is the solution to

\[
... = 6.0665380737180785899...
\]

\[
\frac{\partial^2 \rho}{\partial \frac{\partial \rho}{I}} = \rho
\]

and

where

\[
\sum_{i} c_i^2 = e^2
\]

The exact values of the constants:

\[
c_5 = 0.56924054...
\]

\[
c_4 = 0.67424266...
\]

\[
c_3 = 0.82260038...
\]

\[
c_2 = 1.0000000071923332183...
\]

\[
c_1 = 1.10041156...
\]