

Height Balance Distribution of Search Trees

Ricardo A. Baeza-Yates

Depto. de Ciencias de la Computacién
Universidad de Chile

Casilla 2777, Santiago, Chile
Keywords: Analysis of algorithms, data structures, binary search trees, balanced search trees.

1 Introduction

Binary search trees are well-known data structures used to solve the dictionary problem. Local balancing in
binary search trees is a heuristic applied to the fringe of a tree [Gon83, GRY1, PM85]. This technique lies
between no balance (binary search trees) and rigid balance disciplines (height [AVL62], weight [NR73], or
internal path balance [Gon83]). The basic idea is to keep the fringe of a tree balanced using local rotations.
The origin of this heuristic can be traced to the work of Bell [Bel65], and Walker and Wood [WW?76].

In this paper we study the height balance distribution of binary search trees, with or without local/global
balancing. In Section 2 we study binary search trees (BSTs). In Section 3 we extend this study to locally
balanced search trees and we analyze a generalized heuristic for local balance in binary search trees. From
this we obtain the expected number of comparisons in successful and unsuccessful searches and we also
determine the optimal heuristic for this schema when uniform, random keys are used. Ve also propose an
implementation which in the worst case uses only one pointer per key.

In Section 4 we study the balance distribution of AVL trees and a variant of them. We also include exact

results for small AVL trees.

2 Binary Search Trees

Binary search trees are used to lexicographically store a set of keys [Knu73, GR91]. Every node of the tree
stores a key, say k, and two pointers: the left and the right subtrees, such that any key in the left subtree is
less or equal than k, and any key in the right subtree is greater than k. The height of a tree is defined as
the number of edges in the longest path through the tree.

We define the height balance factor of a node to be

hb =| height(left subtree) — height(right subtree) | > 0.

For example, in AVL trees the hb of a node is always 0 or 1. We define hbx(n) as the expected number of

nodes with hb = k when the number of elements in the tree is n.

A lower bound in the expected number of nodes with hb = k in a random binary search tree of n elements
[BR82] is given by o

— 1N, . — , —
Ru(n) = =) (Ra(i = 1) + Rl (n —) = 2 L ibu(n ~ 1) (1)
i=1
so that
H(n)—" 1%() forn>j
k ==]+1 k\J)» J -

hbi(j) for a small j has to be computed directly using the exact values up to j — 1 and equation (1).

Therefore, we have . .
hbe(n) > hbe(5)

n+l T j+17 for n > . g Ve
Table 1 shows the lower bounds of the fraction of the nodes with hb = k, a lower bound on the expected °
height bal_a.n/;g'factjgli,(_q_@)), the percentage of the nodes included and the size j of the subtrees considered. In . /gfy o
all cases the values are obtained with an ad-hoc program that computes all the possible trees and transitions) J /r o

up to size j — 1. The number of trees of size j — 1 is also shown in Table 1.
We use the fact that all subtrees which are isomorphic upon symmetry have the same behavior with
respect to insertions.

k Binary Basic Partial AVL Trees [BYGZ90]
Search Tree Heuristic AVL Trees (lower (upper
(lower bound) | (lower bound) | (lower bound) bound) bound)
0 .3936707 .5734669 .648306 .5637 7799
1 .2425519 .2825299 311694 2211 4373
2 .1241809 .0464547
3 .0667827 .0152199
4 .0358048 .0043360
5 .0184752 .0009358
Lower bound in E(k) 1.013 445 280 221
% of nodes 89.47 92.31 96.00 75 75
Subtree size j 18 25 25
Trees of size j — 1 113310 80484 173024

P”" i ! Table 1: E:";‘—';l forn>j.

We see that at least 63.6% of all internal nodes in a binary search tree are roots of subtrees with AVL

—

balance, and that

m——
~ ~

0.3936(n + 1)< Tibo(n) < 0.4989(n + 1) .
S R

1 . \\‘

C

3 Locally Balanced Search Trees

This heuristic has been rediscovered many times receiving different names by Itai and Rodeh (“modified
binary search trees”) [IR80], Bagchi and Reingold (“weakly balanced trees”) [BR82], Huang and Wong (“iR
trees”) [HW83], and Greene (“diminished trees”) [Gre83)]. Further analysis was done by Poblete and Munro
(PM85], Hermosilla and Olivos [H1O85), and implicitly in Guibas and Sedgewick [GS78].

We define a t-locally balanced tree as a binary search tree where insertions falling in a subtree of size 2t
produce a reorganization from which the median of the 2t + 1 elements is chosen as the root of two subtrees
of size t. This definition coincides with that of Greene [Gre83) and Poblete and Munro ([PM85], and when
t =2 — 1, it also coincides with the iR trees (HW83]. The case t = 0 is a simple binary search tree and the
case t = 1 is called the basic heuristic [BR82, IR80]. |

The expected unsuccessful search time in these trees [Gre83, PM85] is

L Hea+0(1),
1

Ch=———
" Higa— Hey

where n is the number of elements in the tree and H; = Z;=1 1/j denotes the harmonic numbers.

3.1 A Generalized Heuristic

The generalized heuristic is defined as before, except that the root of the reorganization schema is not selected
as the median. If the elements are {z1,...,22041}, the element z; is chosen as the root with probability p;
such that Z;f_jl p; = 1. This probabilities .may be fixed values or values selected dynamically. These values
will be based on the probability distribution of the elements.

Intuitively, if we model the tree as being built from uniform, random keys, then the median is the best
choice. We can prove this using the analysis technique of Poblete and Munro [PM85).

Let Af,,k be the expected number of subtrees with j keys with root at level k (the root is at level 0). When
an insertion falls in a subtree of size j < 2¢, it is transformed to one of size J+ 1. If j = 2t it is transformed
with probability p; into two subtrees of sizes j — 1 and 2¢ + 1 — j. The probability that an insertion in a
tree of n elements falls in a subtree of size j at level k is ';Jj'_—:A{;_k. Hence, the following recurrence equations

model the insertion process:
; P | S . ;
Angre = Anp + n—_H(’A:\,kl = ((+ 1AL, + qir(2t + 1)AY,)

fori=0,..,2t and ¢; = pi + parya-i. Introducing generating functions on the index k writing in matrix

form, and defining

[-1 0 . . . (2t + 1)zq,
1 -2 . . oo (2t +1)zq2
0o 2 . :
H(z) = 0 j —-(G+1)

. (2t + 1)zq2e
0 2t —(2l + 1)(1 — zQ2¢41) J

we obtain)

Anpa(z) = (I+ mH(Z))An(Z) '
with the initial condition Ag(z) = (1,0,...,0) and with I being the (2t + 1) x (2t + 1) identity matrix.
The average unsuccessful search time is given by [PM85, p.347] as

Gy = X(1)Hnsr + O(1)

where A(z) is the eigenvalue of H(z) that satisfies)«1(1) =1 Let. c = /\’ 1(1). Thls derivative is calculated
using the characteristic polynomial of H([14] B o

2t 41 Co2t41

p(\z) = JJ(A+4) — z(2t + 1)!2 1),bk(x)

i=1
where
1 k=1
be(A) = B)
{ =i +4) k>1.
Computing c;, we obtain

1
H2(+2 - - 2;+2 (22‘-'-1 th(Hk - 1))

cy =

Completing the sum 22 +1 kqe with the k =1 term, we have

1
Hre — s LAy ke

Considering some typical distributions for the p;, we have

Cy =

Uniform: p; = 2z+1 and ¢; = 2 as in a normal binary search tree.
Binomial: p; = (;%,)2-% and
1

Ce = ’

7
2 - (2z+15(‘2:+25 + €

where | €| < ":_, [Sed75].

Using an analogy with Quicksort, the optimal distribution for the probabilities in a random tree is [Sed75,
Theorem 8.1, p.221): p41 = landp; = Ofor j =1,..,2t+ 1(j # t +1). We have therefore proved the
following;:

Theorem 3.1. The optimal heuristic in a random tree is to choose the median. O
In this case, ¢; takes its minimum value ¢; = 1/(Hat42 — He41). The average successful search time can

be obtained using the well known relation C, = (1 + 1/n)C}, —

3.2 Height Balance Distribution

For the basic heuristic, equation (1) does not hold. However, we can show that equation (2) liolds using

the close relationship between Quicksort with a median of three elements and the basic heuristic. From

‘ Sedgewick [Sed75], equation (1) for the basic heuristic is replaced by

RBu(n) = ﬁ(,‘_z) D_(n = (i = D(FE(i = 1)+ Fha(o =

R, e

Standard techniques for solving recurrences yield ™

Re(n) = 2L RB(n = 1) 4 (n = 7) (W:_ 1) _ Rhi(n - 1)

n n—1

From here is easy to show by induction that

n+1—

Rbe(n) > hbe(n - 1)

n

and, hence, equation (2) is true. However, we can obtain a small improvement with the lower order terms
of the exact solution for the previous recurrence. That is,

Bbe(n) _ Rbe(j) | (hbe(i—=8) hbe(i=T)) T~ (=78
n+121+1+(-7~ j-6)E o

forn>ji>7 (3)

where 22 = z(z — 1)---(z — n + 1) denotes a falling factorial, and the summation is bounded by a constant.
The values of hby for the case t = 1 are also shown in Table 1. In the basic heuristic the expected number
of internal nodes with height balance 0 is bounded by

b 0.5734(n + 1) < hbo(n) < 0.6503(n+1) .

The above improv. previous bounds of Bagchi and Reingold [BR82]. With the basic heuristic we have
also that at least 85.6% of all internal nodes are roots with AVL height balance.

These results\cm the fact that random binary search trees are quite well balanced in the average,
and even more so with the basic heuristic. A visual comparison of the height balance distribution is given
by Figure 1.

3.3 Implementation Issues

The implementation for the basic heuristic (¢ = 1) that we propose is a modification of the implementation
by Huang and Wong [HW83]. Huang and Wong store the two descendants of a node in the same record.
Each record has two pointers, the left pointer addresses the two descendants of the left key and the right
pointer addresses the two descendants of the right key. The nodes without siblings have empty space in
their records. In the worst case the storage utilization for the basic heuristic is 75%. For the insertion and
deletion algorithms we refer the reader to [[IW83].

We can obtain a full utilization and one pointer per key in the worst case by storing the nodes without
siblings (excluding the root) in a record with space for one key. To know the record type we need only one
bit. In the worst case, all the keys are in records with pointers, i.e., one pointer per key. On the average 2/7
of the keys will not have siblings [IIW83]. Ilence, on the average we need space for n keys and 5n/7 pointers.

Therefore, if the key and the pointer have the same size, we can store a binary search tree saving more than

0.8 1

0.7 7 AVL trees

0.6
s Partial AVL trees

054 -
Fraction

0.4 -

0.3 1

0.2 -

0.1 1 Binary search trees

0.0 Basic helurist.ic ' | - i ; — 1
0 1 2 3 4 5 6 7 8

Balance factor (k)
Figure 1: Ileight balance distribution.

42% of the space taken by the common implementation (n keys and 2n pointers). Also, the expected search
time is reduced by 14%.

For t > 1, it is not clear which is the best way of keeping the subtrees with less than 2¢ + 1 keys. Usually
a binary search tree similar to the whole tree is used. This tree is reorganized when it reaches the critical
size 2t + 1. Another possibility is to use an ordered [Gre83] or unordered list. The choice depends on the

value of ¢ and the use of the tree (depending on the frequency of searches and insertions).

4 AVL Trees

AVL-trees, or height balanced trees, are binary search trees for which the height balance factor is at most
one in each node [Knu73, GR91]. AVL-trees provide logarithmic worst cases for searches, insertions and
deletions. The exact average case analysis for these trees is still open, although some bounds are known
[Bro79, BYGZ90]. Ilere we extend the analysis by obtaining exact results for trees up to n =25, extending
the results of Richards [Ric83], and considering a variant of AVL trees that we call j-partial AVL trees. We
define a j-partial AVL tree as a tree in which all subtrees of size less than j are AVL trees. For j-partial
AVL trees we assume that equation (2) holds. Intuitively, this lower bound should be pessimistic.

For the generation of j-partial AVL trees only the symmetry at the root of the tree was used. The lower
bound values for b for j-partial AVL trees and bounds for AVL trees [BYGZ90] are given in Table 1. The

exact curve for AVL trees lies within the dotted triangle.

For j-partial AVL trees with j > 25, the expected number of internal nodes with height balance 0 is
bounded by ;
10.6483(n+1) < Rbo(n) < 0.6884(n+1).

Intuitively, these bounds should be also bounds for AVL trees. In this case the bounds would be better than
Brown’s [Bro79] and these of Baeza-Yates et al. [BYGZ90], namely

0.5637(n+ 1) < hbo(n) < 0.7799(n+1) .

Hofvee r, we are not able to prove that at least 64.83% of the nodes in an AVL tree are balanced nodes

becauise rotations above subtrees of size j may change the height balance distribution.

0.80
0.70 -
0.60
Ratio
0.50 H

0.40

0.30 ~

| I i I I I I I I I I I I I I 1

I | I I) 1 ¥
12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25
Number of keys (n)

Figure 2: Fraction of balanced nodes and rotation probabilities.

To obtain more information about AVL trees, whose exact average case analysis is still an open problem,
we generated the exact behavior all possible trees up to n = 25. For the generation of these trees only
the symmetry at the root of the tree was used. This allows us to cut almost in half the number of trees
considered by Richards [Ric83] who has results up to n = 18 (exactly in half for even n). Figures 2 and 3 (in
a logarithmic scale and contrasted with totally balanced binary search trees) show these results for various
parameters, where r, is the probability of rotation in the n-th insertion, R, =):;;1 ri/n is the average
number of rotations per insertions, and H, is the average height. These results suggest that the number
of balanced nodes its approximately 69% (that is, closer to the upper bound of [BYGZ90]). Experimental
results in (ZT82) give r, 2 0.466 and C!, a 1.018 log, n + 0.051.

Table 2 shows the new results for n = 18 to n = 25 that extends those by Richards [Ric83]. It also
corrects the probability of no rotation for n = 19, and the fact that the average external path length (EPL)

X

6.0 5

5.5

5.0 1

151

4.0
Levels

3.5

3.0 +
2.5 1

2.0 4

15 | I I I I I | 1 I L

3 5 7 9 11 13 15 17 19 21 23 25
Number of keys (n)

Figure 3: Average height and search costs for AVL trees (solid line)
~ and totally balanced binary search trees.

is really the unsuccessful average search cost C,. We also include the average search cost for successful

searches, the average height H,, and the amortized number of rotations per insertion, R,,.

n Tree | Probabilities for the n-th insertion R, Chn Cl H,
shapes | No Rot Single Double

18 | 3156 | 0.535819 0.232179 0.232003 0.371084 | 3.604358 4.362023 5.000000
19 | 5018 | 0.503246 0.248510 0.248244 0.377698 | 3.666485 4.433161 5.000000
20 | 8044 | 0.491279 0.254481 0.254240 | 0.384250 | 3.726225 4.501166 5.022732
21 | 19384 | 0.505706 0.247224 0.247074 0.389490 | 3.785124 4.567619 5.095702
22 | 41492 | 0.529744 0.235185 0.235071 0.393161 | 3.843387 4.632805 5.220293
23 | 88458 | 0.550126 0.224983 0.224890 0.395627 | 3.900551 4.696361 5.377563
24 | 173024 | 0.562511 0.218775 0.218714 | 0.397371 | 3.956237 4.757987 5.543058
25 | 335098 | 0.568649 0.215694 0.215657 0.398730 | 4.010248 4.817546 5.696355

Table 2: Exact results for small AVL trees.

)
Molbily 1y 2. 4 b PG265 witt o Lo ffect

Acknowledgments

The author wishes to acknowledge the helpful comments of Patricio Poblete, Gaston Gonnet, and Bob Dailey.

o 8
b2

C

References
[AVLG2] G.M. Adel’son-Vel’skii and E.M. Landis. An algorithm for the organization of information. Dok-
ladi Akademia Nauk SSSR, 146(2):263-266, 1962.

[Bel65] C. Bell. An Investigation into the Principles of the Classification and Analysis of Data on an
Automatic Digital Computer. PhD thesis, Leeds University, 1965.

[BR82] A. Bagchi and Edward M. Reingold. Aspects of insertion in random trees. Computing, 29:11-29,
1982.

[Bro79] M.R. Brown. A partial analysis of random height-balanced trees. STAM J on Computing, 8(1):33-
41, Feb 1979.

[BYGZ90] R. Baeza-Yates, G.II. Gonnet, and N. Ziviani. Expected behaviour analysis of AVL trees. 2nd
Scandinavian Workshop in Algorithmic Theory, SWAT’90, Springer-Verlag LNCS 447, pages
143-159, Bergen, Norway, July 1990.

(Gon83] Gaston H. Gonnet. Balancing binary trees by internal path reduction. C.4CA{, 26(12):1074-1081,
Dec 1983. '

(GR91) G.H. Gonnet and Baeza-Yates R. Handbook of Algorithms and Data Structures - In Pascal and
C. Addison-Wesley, Wokingham, UK, 1991. (second edition).

[Gre83] Daniel II. Greene. Labelled Formal Lariguaycs and Their Uses. PhD thesis, Computer Science
Dept., Stanford University, June 1983.

(GS78] L.J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In FOCS,
volume 19, pages 8-21, Ann Arbor MI, Oct 1978.

‘ (11085) L. Ilermosilla and J. Olivos. A bijective approach to single rotation trees. In 5th International
Conference in Computer Science, pages 22-30, Santiago, Chile, 1985.

[IIW83] S. Huang and C. Wong. Binary search trees with limited rotation. BIT, 23:436-455, 1983.

(IR80] A. Itai and M. Rodeh. Modified binary search trees. Technical Report 182, Dept. of Computer
Science, Technion-IIT, Haifa, Israel, Aug 1980.

(Knu73] D.E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
: Wesley, Reading, Mass., 1973.

[NR73] Jurg Nievergelt and Edward M. Reingold. Binary search trees of bounded balance. SIAM J on
Computing, 2(1):33-43, 1973.

[PM85] P.V. Poblete and J.I. Munro. The analysis of a fringe heuristic for binary search trees. Journal
of Algorithms, 6:336-350, 1985.

[Ric83] R.C. Richards. Shape distribution of height-balanced trees. Information Processing Lellers,
17:17-20, 1983. '

[SedZS] R. Sedgewick. Quicksort. PhD thesis, Computer Science Department, Stanford University, May :
/ 77— ~1976: Report STAN-CS-75-492. L . e

[WW76] W.A. Walker and Derick Wood. Locally balanced binary trees. Computer Journal, 19(4):322-325,
Nov 1976.

(2T82) N. Ziviani and F.\WV. Tompa. A look at symmetric binary B-trees. Infor, 20(2):65-81, May 1982.
Y

\\

L l{ . 9

/
1
i

-

